Article

MetaProm: a neural network based meta-predictor for alternative human promoter prediction.

Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104, USA.
BMC Genomics (Impact Factor: 4.4). 02/2007; 8:374. DOI: 10.1186/1471-2164-8-374
Source: PubMed

ABSTRACT De novo eukaryotic promoter prediction is important for discovering novel genes and understanding gene regulation. In spite of the great advances made in the past decade, recent studies revealed that the overall performances of the current promoter prediction programs (PPPs) are still poor, and predictions made by individual PPPs do not overlap each other. Furthermore, most PPPs are trained and tested on the most-upstream promoters; their performances on alternative promoters have not been assessed.
In this paper, we evaluate the performances of current major promoter prediction programs (i.e., PSPA, FirstEF, McPromoter, DragonGSF, DragonPF, and FProm) using 42,536 distinct human gene promoters on a genome-wide scale, and with emphasis on alternative promoters. We describe an artificial neural network (ANN) based meta-predictor program that integrates predictions from the current PPPs and the predicted promoters' relation to CpG islands. Our specific analysis of recently discovered alternative promoters reveals that although only 41% of the 3' most promoters overlap a CpG island, 74% of 5' most promoters overlap a CpG island.
Our assessment of six PPPs on 1.06 x 109 bps of human genome sequence reveals the specific strengths and weaknesses of individual PPPs. Our meta-predictor outperforms any individual PPP in sensitivity and specificity. Furthermore, we discovered that the 5' alternative promoters are more likely to be associated with a CpG island.

0 Bookmarks
 · 
211 Views
  • Source
    Next Generation Sequencing in Cancer Research, 07/2013: pages 301-317;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5'-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region.
    Scientific Reports 01/2011; 1:55. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.
    PLoS ONE 01/2013; 8(4):e60288. · 3.53 Impact Factor

Full-text (2 Sources)

Download
26 Downloads
Available from
May 15, 2014