In vivo functional analysis of the counterbalance of hyperactive phosphatidylinositol 3-kinase p110 catalytic oncoproteins by the tumor suppressor PTEN

Complutense University of Madrid, Madrid, Madrid, Spain
Cancer Research (Impact Factor: 9.28). 11/2007; 67(20):9731-9. DOI: 10.1158/0008-5472.CAN-07-1278
Source: PubMed

ABSTRACT The signaling pathways involving class I phosphatidylinositol 3-kinases (PI3K) and the phosphatidylinositol-(3,4,5)-trisphosphate phosphatase PTEN regulate cell proliferation and survival. Thus, mutations in the corresponding genes are associated to a wide variety of human tumors. Heterologous expression of hyperactive forms of mammalian p110alpha and p110beta in Saccharomyces cerevisiae leads to growth arrest, which is counterbalanced by coexpression of mammalian PTEN. Using this in vivo yeast-based system, we have done an extensive functional analysis of germ-line and somatic human PTEN mutations, as well as a directed mutational analysis of discrete PTEN functional domains. A distinctive penetrance of the PTEN rescue phenotype was observed depending on the levels of PTEN expression in yeast and on the combinations of the inactivating PTEN mutations and the activating p110alpha or p110beta mutations analyzed, which may reflect pathologic differences found in tumors with distinct alterations at the p110 and PTEN genes or proteins. We also define the minimum length of the PTEN protein required for stability and function in vivo. In addition, a random mutagenesis screen on PTEN based on this system allowed both the reisolation of known clinically relevant PTEN mutants and the identification of novel PTEN loss-of-function mutations, which were validated in mammalian cells. Our results show that the PI3K/PTEN yeast-based system is a sensitive tool to test in vivo the pathologic properties and the functionality of mutations in the human p110 proto-oncogenes and the PTEN tumor suppressor and provide a framework for comprehensive functional studies of these tumor-related enzymes.


Available from: María Molina, Jan 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
    Biochimica et Biophysica Acta 05/2013; 1832(10). DOI:10.1016/j.bbadis.2013.05.022 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog (PTEN) plays essential roles in cellular processes including survival, proliferation, energy metabolism, and cellular architecture. Activating the mutations of PTEN has long been known to produce a variety of disorders, mainly diabetes and cancer in humans. Owing to the importance of PTEN gene, a functional analysis using different in silico approaches was undertaken to explore the possible associations between genetic mutations and phenotypic variation. SIFT, PolyPhen, I-Mutant 3.0, SNP&GO, and PHD-SNP were used for initial screening of functional nsSNPs. From the observed results, three mutations R47G, H61D, and V343E were selected based on their surface accessibility and total energy change. By molecular dynamics approach, H61D showed increase in flexibility, radius of gyration, solvent accessibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. Further from principal component analysis and interaction analysis, we identified significant structural changes that can reasonably explain the involvement of deviations in stability caused by mutations. Our analysis also predicts the involvement of SNPs that could potentially influence post-translational modifications in PTEN gene. These in silico predictions could provide a new insight into structural and functional impact of PTEN polymorphisms.
    Cell biochemistry and biophysics 11/2012; DOI:10.1007/s12013-012-9472-9 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.
    Proceedings of the National Academy of Sciences 08/2012; 109(35):14164-9. DOI:10.1073/pnas.1211962109 · 9.81 Impact Factor