Arp2/3-independent assembly of actin by Vibrio type III effector VopL

Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 11/2007; 104(43):17117-22. DOI: 10.1073/pnas.0703196104
Source: PubMed


Microbial pathogens use a variety of mechanisms to disrupt the actin cytoskeleton during infection. Vibrio parahaemolyticus (V. para) is a Gram-negative bacterium that causes gastroenteritis, and new pandemic strains are emerging throughout the world. Analysis of the V. para genome revealed a type III secretion system effector, VopL, encoding three Wiskott-Aldrich homology 2 domains that are interspersed with three proline-rich motifs. Infection of HeLa cells with V. para induces the formation of long actin fibers in a VopL-dependent manner. Transfection of VopL promotes the assembly of actin stress fibers. In vitro, recombinant VopL potently induces assembly of actin filaments that grow at their barbed ends, independent of eukaryotic factors. Vibrio VopL is predicted to be a bacterial virulence factor that disrupts actin homeostasis during an enteric infection of the host.


Available from: Dara L Burdette
  • Source
    • "(Makino et al., 2003), which blocks the MAPKs signaling pathway by inhibiting the start and biological activity of mitogen-activated protein kinase (Trosky et al., 2004), thereby suppressing cell division via a new mechanism. Vop L (VPA1370) contains three Wiskott Aldrich homology 2 (WH2) domains and a C-terminal domain (VCD; Namgoong et al., 2011; Yu et al., 2011), which generally induces the formation of polarized actin fibers and accelerates the gathering of actin filaments by binding to actin monomers (Liverman et al., 2007). Notably, Vop L may provide a favorable microenvironment in which bacteria can replicate, thereby enhancing the uptake and invasion of V. parahaemolyticus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
    Frontiers in Microbiology 03/2015; 6:144. DOI:10.3389/fmicb.2015.00144 · 3.99 Impact Factor
  • Source
    • "The tandem WH2 array of VopL is a weak actin nucleator on its own; nucleation activity is improved through VopL dimerization, which is mediated by the effector's C-terminal domain (Yu et al., 2011). Cell expression of VopL causes a dramatic actin phenotype characterized by formation of stress fibres that span the whole cell body (Liverman et al., 2007) (Fig. 3). Stress fibres exert tension that allows cell reshaping; this may prove beneficial for bacterial entry or for maintenance of cell structure during bacterial replication. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. This article is protected by copyright. All rights reserved.
    Cellular Microbiology 12/2014; 17(2). DOI:10.1111/cmi.12399 · 4.92 Impact Factor
  • Source
    • "Vibrio cholerae up-regulates chemotaxis genes in response to chitin oligosaccharides, facilitating attachment to chitinous organisms (Meibom et al. 2005). An effector protein of T3SS2 aids in improved colonization of V. parahaemolyticus (Liverman et al. 2007). Type IV pili also induce colonization in some bacterial pathogens including V. vulnificus (Paranjpye et al. 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing loads of anthropogenic pollutants, compounded with climate change events, are likely to induce environmental changes in many wetlands with impacts on the native microinvertebrates and pathogens causing increased occurrence of water-borne diseases, which affect millions of people each year. In wetlands bacterial pathogens are actively preyed on by many protozoa and filter-feeding organisms but this predation can be compensated by the nourishment and protection offered by certain microinvertebrates, acting as hosts, e.g., chitinous rotifers, copepods and cladocerans. The complex interactions of ecological, biological, and genetic components mediate disease-causing organisms to exploit microinvertebrate hosts to occupy diverse niches, obtain nutrition, and withstand physico-chemical stresses. The persistence of the human pathogens in wetlands is often enabled by their association with microinvertebrates and also depends on their quorum sensing mediated colonization, biofilm formation, switching into dormant stage, and horizontal transfer of adaptive genes. The symbiosis with microinvertebrates is facilitated by the pathogen's immune evasion and fitness factors, e.g., Type-IV pili, capsular-polysaccharides, nutrient transportation, virulence and binding proteins, proteases, chitinases, and secretion systems. Spatio-temporal variation in the population of copepods and aquatic eggs/larvae of mosquitoes and midge flies, which act as vectors, can influence the outbreaks of cholera, diarrhea, malaria, dengue, filariasis and drucunculiasis. Changes in climatic factors (temperature, salinity, cyclones, rainfall, etc.) and anthropogenic pollutions (sewage, fertilizer and insecticide) may modify the abundance and biodiversity of microinvertebrates, and thus possibly exacerbate the persistence and dispersal of water-borne pathogens. Thus there is a need to adopt ecohydrological and eco-friendly interventions for managing wetlands while conserving them.
    Wetlands Ecology and Management 10/2014; 22(5):469-491. DOI:10.1007/s11273-014-9373-3 · 1.27 Impact Factor
Show more