Arp2/3-independent assembly of actin by Vibrio type III effector VopL.

Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(43):17117-22. DOI: 10.1073/pnas.0703196104
Source: PubMed

ABSTRACT Microbial pathogens use a variety of mechanisms to disrupt the actin cytoskeleton during infection. Vibrio parahaemolyticus (V. para) is a Gram-negative bacterium that causes gastroenteritis, and new pandemic strains are emerging throughout the world. Analysis of the V. para genome revealed a type III secretion system effector, VopL, encoding three Wiskott-Aldrich homology 2 domains that are interspersed with three proline-rich motifs. Infection of HeLa cells with V. para induces the formation of long actin fibers in a VopL-dependent manner. Transfection of VopL promotes the assembly of actin stress fibers. In vitro, recombinant VopL potently induces assembly of actin filaments that grow at their barbed ends, independent of eukaryotic factors. Vibrio VopL is predicted to be a bacterial virulence factor that disrupts actin homeostasis during an enteric infection of the host.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
    Frontiers in Microbiology 01/2015; 6:144. DOI:10.3389/fmicb.2015.00144 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway.
    PLoS Pathogens 03/2015; 11(3):e1004694. DOI:10.1371/journal.ppat.1004694 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing loads of anthropogenic pollutants, compounded with climate change events, are likely to induce environmental changes in many wetlands with impacts on the native microinvertebrates and pathogens causing increased occurrence of water-borne diseases, which affect millions of people each year. In wetlands bacterial pathogens are actively preyed on by many protozoa and filter-feeding organisms but this predation can be compensated by the nourishment and protection offered by certain microinvertebrates, acting as hosts, e.g., chitinous rotifers, copepods and cladocerans. The complex interactions of ecological, biological, and genetic components mediate disease-causing organisms to exploit microinvertebrate hosts to occupy diverse niches, obtain nutrition, and withstand physico-chemical stresses. The persistence of the human pathogens in wetlands is often enabled by their association with microinvertebrates and also depends on their quorum sensing mediated colonization, biofilm formation, switching into dormant stage, and horizontal transfer of adaptive genes. The symbiosis with microinvertebrates is facilitated by the pathogen's immune evasion and fitness factors, e.g., Type-IV pili, capsular-polysaccharides, nutrient transportation, virulence and binding proteins, proteases, chitinases, and secretion systems. Spatio-temporal variation in the population of copepods and aquatic eggs/larvae of mosquitoes and midge flies, which act as vectors, can influence the outbreaks of cholera, diarrhea, malaria, dengue, filariasis and drucunculiasis. Changes in climatic factors (temperature, salinity, cyclones, rainfall, etc.) and anthropogenic pollutions (sewage, fertilizer and insecticide) may modify the abundance and biodiversity of microinvertebrates, and thus possibly exacerbate the persistence and dispersal of water-borne pathogens. Thus there is a need to adopt ecohydrological and eco-friendly interventions for managing wetlands while conserving them.
    Wetlands Ecology and Management 10/2014; 22(5):469-491. DOI:10.1007/s11273-014-9373-3 · 1.22 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014