The Human T-Cell Leukemia Virus Type 1 Tax Oncoprotein Requires the Ubiquitin-Conjugating Enzyme Ubc13 for NF- B Activation

Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, the University of Miami, Miller School of Medicine, 1550 NW 10 Avenue, Miami, FL 33136, USA.
Journal of Virology (Impact Factor: 4.44). 01/2008; 81(24):13735-42. DOI: 10.1128/JVI.01790-07
Source: PubMed


Ubiquitination of the human T-cell leukemia virus 1 Tax oncoprotein provides an important regulatory mechanism that promotes the Tax-mediated activation of NF-kappaB. However, the type of polyubiquitin chain linkages and the host factors that are required for Tax ubiquitination have not been identified. Here, we demonstrate that Tax polyubiquitin chains are composed predominantly of lysine 63-linked chains. Furthermore, the ubiquitination of Tax is critically dependent on the E2 ubiquitin-conjugating enzyme Ubc13. Tax interacts with Ubc13, and small interfering RNA-mediated knockdown of Ubc13 expression abrogates Tax ubiquitination and the activation of NF-kappaB. Mouse fibroblasts lacking Ubc13 exhibit impaired Tax activation of NF-kappaB despite normal tumor necrosis factor- and interleukin-1-mediated NF-kappaB activation. Finally, the interaction of Tax with NEMO is disrupted in the absence of Tax ubiquitination and Ubc13 expression, suggesting that Tax ubiquitination is critical for NEMO binding. Collectively, our results reveal that Ubc13 is essential for Tax ubiquitination, its interaction with NEMO, and Tax-mediated NF-kappaB activation.

2 Reads
  • Source
    • "Tax-1 contains a PDZ binding motif (PBM) in its carboxyl-terminus that is important for binding to DLG-1 and other PDZ containing proteins, and these interactions were thought to play an important role for cell transformation by Tax-1. In addition, Tax-1, but not Tax-2, undergoes K63-linked polyubiquitination as part of its mechanism to activate NF-κB (Shembade et al., 2007; Journo et al., 2013). It is apparent that these differences do not account for the stronger transforming capability of Tax-2 in primary CD4+ T cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are two closely related retroviruses. HTLV-1 causes adult T cell leukemia and lymphoma, whereas HTLV-2 infection is not etiologically linked to human disease. The viral genomes of HTLV-1 and -2 encode highly homologous transforming proteins, Tax-1 and Tax-2, respectively. Tax-1 is thought to play a central role in transforming CD4+ T lymphocytes. Expression of Tax-1 is crucial for promoting survival and proliferation of virally infected human T lymphocytes and is necessary for initiating HTLV-1-mediated oncogenesis. In transgenic mice and humanized mouse model, Tax-1 has proven to be leukemogenic. Although Tax-1 is able to efficiently transform rodent fibroblasts and to induce lymphoma in mouse model, it rarely transforms primary human CD4+ T lymphocytes. In contrast, Tax-2 efficiently immortalizes human CD4+ T cells though it exhibits a lower transforming activity in rodent cells as compared to Tax-1. We here discuss our recent observation and views on the differential transforming activity of Tax-1 and Tax-2 in human T cells.
    Frontiers in Microbiology 09/2013; 4:287. DOI:10.3389/fmicb.2013.00287 · 3.99 Impact Factor
  • Source
    • "Four central activities have been linked to Tax transforming potential. First, Tax activates cellular signaling pathways, including the canonical [4-9] and non-canonical NF-κB [10-13], the SRF [14-16] and the AP1 [17,18] pathways. This activity determines the expression of cellular genes involved in proliferation and differentiation of T lymphocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transformation by the Tax oncoprotein of the human T cell leukemia virus type 1 (HTLV-1) is governed by actions on cellular regulatory signals, including modulation of specific cellular gene expression via activation of signaling pathways, acceleration of cell cycle progression via stimulation of cyclin-dependent kinase activity leading to retinoblastoma protein (pRb) hyperphosphorylation and perturbation of survival signals. These actions control early steps in T cell transformation and development of Adult T cell leukemia (ATL), an aggressive malignancy of HTLV-1 infected T lymphocytes. Post-translational modifications of Tax by phosphorylation, ubiquitination, sumoylation and acetylation have been implicated in Tax-mediated activation of the NF-kappaB pathway, a key function associated with Tax transforming potential. In this study, we demonstrate that acetylation at lysine K346 in the carboxy-terminal domain of Tax is modulated in the Tax nuclear bodies by the acetyltransferase p300 and the deacetylases HDAC5/7 and controls phosphorylation of the tumor suppressor pRb by Tax-cyclin D3-CDK4-p21CIP complexes. This property correlates with the inability of the acetylation deficient K346R mutant, but not the acetylation mimetic K346Q mutant, to promote anchorage-independent growth of Rat-1 fibroblasts. By contrast, acetylation at lysine K346 had no effects on the ability of Tax carboxy-terminal PDZ-binding domain to interact with the tumor suppressor hDLG. The identification of the acetyltransferase p300 and the deacetylase HDAC7 as enzymes modulating Tax acetylation points to new therapeutic targets for the treatment of HTLV-1 infected patients at risk of developing ATL.
    Retrovirology 07/2013; 10(1):75. DOI:10.1186/1742-4690-10-75 · 4.19 Impact Factor
  • Source
    • "Therefore, we next examined if RNF11 blocks the Lys63-linked polyubiquitination of TBK1/IKKi. For this purpose, we used an HA-ubiquitin (Ub) plasmid with all lysines mutated to arginines except for Lys63 (Lys63 only) to facilitate selective Lys63-linked polyubiquitination [37]. Endogenous TBK1 and IKKi were conjugated with Lys63-linked polyubiquitin chains only upon transfection with poly(I:C) as expected (Fig. 3C). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A key feature of the innate antiviral immune response is a rapid nonspecific response to virus infection largely mediated by the induction and extracellular secretion of type I interferons (IFNs) that restrict virus replication. Cytoplasmic sensors such as RIG-I recognize viral RNA and trigger antiviral signaling pathways that upregulate IFN transcription. However, it remains largely unknown how antiviral signaling is negatively regulated to maintain homeostasis after the elimination of virus. In this report, we have identified the RING domain-containing protein RING finger 11 (RNF11) as a novel negative regulator of innate antiviral signaling. Overexpression of RNF11 downregulated IFN-β expression and enhanced viral replication whereas siRNA-mediated knockdown of RNF11 suppressed viral replication. RNF11 interacted with the noncanonical IKK kinases TBK1/IKKi and attenuated their Lys63-linked polyubiquitination by blocking interactions with the E3 ligase TRAF3. The inhibitory function of RNF11 was dependent on the ubiquitin-binding adaptor molecule TAX1BP1 which was required for RNF11 to target TBK1/IKKi. Collectively, these results indicate that RNF11 functions together with TAX1BP1 to restrict antiviral signaling and IFN-β production.
    PLoS ONE 01/2013; 8(1):e53717. DOI:10.1371/journal.pone.0053717 · 3.23 Impact Factor
Show more

Preview (2 Sources)

2 Reads
Available from