Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function.

Institut National de la Santé et de la Recherche Médicale, U554, 34090 Montpellier, France.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(44):17323-8. DOI: 10.1073/pnas.0705356104
Source: PubMed

ABSTRACT Retinoid X receptors (RXRalpha, -beta, and -gamma) occupy a central position in the nuclear receptor superfamily, because they form heterodimers with many other family members and hence are involved in the control of a variety of (patho)physiologic processes. Selective RXR ligands, referred to as rexinoids, are already used or are being developed for cancer therapy and have promise for the treatment of metabolic diseases. However, important side effects remain associated with existing rexinoids. Here we describe the rational design and functional characterization of a spectrum of RXR modulators ranging from partial to pure antagonists and demonstrate their utility as tools to probe the implication of RXRs in cell biological phenomena. One of these ligands renders RXR activity particularly sensitive to coactivator levels and has the potential to act as a cell-specific RXR modulator. A combination of crystallographic and fluorescence anisotropy studies reveals the molecular details accounting for the agonist-to-antagonist transition and provides direct experimental evidence for a correlation between the pharmacological activity of a ligand and its impact on the structural dynamics of the activation helix H12. Using RXR and its cognate ligands as a model system, our correlative analysis of 3D structures and dynamic data provides an original view on ligand actions and enables the establishment of mechanistic concepts, which will aid in the development of selective nuclear receptor modulators.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Retinoic acids are essential for embryonic development, tissue organization, and homeostasis and act via retinoic acid receptors (RARs) that form heterodimers with retinoid X receptors (RXRs). Human RARs and RXRs include the three subtypes α, β, and γ, which have varying distributions and physiological functions among human tissues. Recent reports show that subtype-specific binding of several chemicals to RARs or RXRs may lead to endocrine disruption. To evaluate these ligand-like chemicals, convenient assay systems for each receptor subtype are required. Methods We developed reporter assay yeasts to screen ligands for RXR subtype receptor homodimers. To screen RAR ligands, yeasts were engineered to express RAR subtypes with defective RXRα, which fails to bind to coactivators because of its shortened c-terminus. Results These assay yeasts were validated using known RXR- and RAR-specific ligands and subtype-specific responses were clearly shown. Subtype-specific ligand activities of the suspected chemical RAR or RXR ligands o-t-butylphenol, triphenyltin chloride, tributyltin chloride, and 4-nonylphenol were determined. Discussion The present assay yeasts may be valuable tools for subtype-specific assessments of unidentified environmental ligand chemicals and receptor-specific pharmaceuticals.
    Journal of pharmacological and toxicological methods 01/2014; · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2. Few ligands are known, which selectively target the coactivator side of the AF2, or which can be selectively switched from one side of the interface to the other. We use NMR spectroscopy and modeling to identify a natural product, which targets the retinoid X receptor (RXR) at both sides of the AF2. We then use chemical synthesis, cellular screening and X-ray co-crystallography to split this dual activity, leading to a potent and molecularly efficient RXR agonist, and a first-of-kind inhibitor selective for the RXR/coactivator interaction. Our findings justify future exploration of natural products at dynamic protein interfaces.
    Angewandte Chemie International Edition 05/2014; · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXRα (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKKβ, a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXRα activating compounds lacked IKKβ inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKKα and IKKβ, which in most cases paralleled significant growth inhibitory and apoptosis inducing activities.
    Bioorganic & medicinal chemistry 01/2014; · 2.82 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014