Article

Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells.

Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau, Barcelona 08025, Spain.
Biomaterials (Impact Factor: 8.31). 03/2008; 29(4):427-37. DOI: 10.1016/j.biomaterials.2007.10.006
Source: PubMed

ABSTRACT A combined strategy using bioluminescence imaging, bone densitometry and histology was used to analyze the bone regeneration capacity of human bone marrow (hBMSC) and adipose tissue (hAMSC) mesenchymal stem cells, seeded in an osteoconductive arginine-glycine-aspartate (RGD) crosslinked hydrogel scaffold, implanted in a mouse calvarial bone defect. We show that firefly luciferase labeled stem cells can be monitored in vivo through a prolonged 90 days period, during which hBMSCs survive better than hAMSCs and that the density of scaffold bearing defects increased significantly more than that of defects without scaffolds.

0 Followers
 · 
118 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC)-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone) for 12 weeks. Investigating with microcomputer tomography, the ADSC-laden paper-stacking membranes showed the most significant bone reconstruction, and from a morphological perspective, this group occupied 90% of the surface area of the defect, produced the highest bone regeneration volume, and showed the highest bone mineral density of 823.06 mg/cm(3). From hematoxylin and eosin and Masson staining, the new bone tissue was most evident in the ADSC-laden scaffold group. Using quantitative polymerase chain reaction analysis from collected tissues, we found that the ADSC-laden paper-stacking membrane group presented the highest osteogenic-related gene expressions of osteocalcin, osteopontin, osteoprotegerin, bone sialoprotein, runt-related transcription factor 2, and osterix (two to three times higher than the control group, and 1.5 times higher than the paper-stacking membrane group in all the genes). It is proposed that ADSC-laden layer-by-layer paper-stacking scaffolds could be used as a way of promoting bone defect treatment.
    International Journal of Nanomedicine 01/2015; 10:1273-90. DOI:10.2147/IJN.S77118 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major limitation in the development of cellular therapies using human mesenchymal stem cells (hMSCs) is cell survival post-transplantation. In this study, we challenged the current paradigm of hMSC survival, which assigned a pivotal role to oxygen, by testing the hypothesis that exogenous glucose may be key to hMSC survival. We demonstrated that hMSCs could endure sustained near-anoxia conditions only in the presence of glucose. In this in vitro cell model, the protein expressions of Hif-1α and angiogenic factors were upregulated by the presence of glucose. Ectopically implanted tissue constructs supplemented with glucose exhibited four- to fivefold higher viability and were more vascularized compared to those without glucose at day 14. These findings provided the first direct in vitro and in vivo demonstration of the proangiogenic and prosurvival functions of glucose in hMSC upon transplantation and identified glucose as an essential component of the ideal scaffold for transplanting stem cells. STEM CELLS2013;31:526–535
    Stem Cells 03/2013; 31(3). DOI:10.1002/stem.1299 · 7.70 Impact Factor