Article

Angiotensin II directly triggers endothelial exocytosis via protein kinase C-dependent protein kinase D2 activation

University of Texas Health Science Center at Tyler, Tyler, Texas, United States
Journal of Pharmacological Sciences (Impact Factor: 2.11). 11/2007; 105(2):168-76. DOI: 10.1254/jphs.FP0070858
Source: PubMed

ABSTRACT Angiotensin II (AII) has been reported to induce leukocyte adhesion to endothelium through up-regulation of P-selectin surface expression. However, the underlying molecular and cellular mechanisms remain unknown. P-selectin is stored in Weibel-Palade bodies (WPBs), large secretory granules, in endothelial cells. In this study, we examined the role of protein kinase D (PKD), a newly identified regulator of protein transport, in AII-induced WPB exocytosis and the resultant P-selectin surface expression. We demonstrated that PKD2 was rapidly activated by AII in endothelial cells through phosphorylation of the activation loop at Ser744/748. AII-induced PKD2 activation correlated with increased P-selectin surface expression. Furthermore, AII-regulated PKD2 activation is protein kinase C (PKC) alpha-dependent. Importantly, knock-down of either PKD2 or PKCalpha expression inhibited AII-mediated P-selectin surface expression and monocyte adhesion. Our findings provide the first evidence that stimulation of P-selectin surface expression via PKCalpha-dependent PKD2 activation could be an important mechanism in the early onset of AII-initiated endothelial adhesiveness.

0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptors (GPCRs) are a major family of signaling molecules, central to the regulation of inflammatory responses. Their activation upon agonist binding is attenuated by GPCR kinases (GRKs), which desensitize the receptors through phosphorylation. G protein-coupled receptor kinase 2(GRK2) down-regulation in leukocytes has been closely linked to the progression of chronic inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. Because leukocytes must interact with the endothelium to infiltrate inflamed tissues, we hypothesized that GRK2 down-regulation in endothelial cells would also be pro-inflammatory. To determine whether GRK2 down-regulation in endothelial cells is pro-inflammatory. siRNA-mediated ablation of GRK2 in human umbilical vein endothelial cells (HUVECs) was used in analyses of the role of this kinase. Microscopic and biochemical analyses of Weibel-Palade body (WPB) formation and functioning, live cell imaging of calcium concentrations and video analyses of adhesion of monocyte-like THP-1 cells provide clear evidence of GRK2 function in histamine activation of endothelial cells. G protein-coupled receptor kinase 2 depletion in HUVECs increases WPB exocytosis and P-selectin-dependent adhesion of THP-1 cells to the endothelial surface upon histamine stimulation, relative to controls. Further, live imaging of intracellular calcium concentrations reveals amplified histamine receptor signaling in GRK2-depleted cells, suggesting GRK2 moderates WPB exocytosis through receptor desensitization. G protein-coupled receptor kinase 2 deficiency in endothelial cells results in increased pro-inflammatory signaling and enhanced leukocyte recruitment to activated endothelial cells. The ability of GRK2 to modulate initiation of inflammatory responses in endothelial cells as well as leukocytes now places GRK2 at the apex of control of this finely balanced process.
    Journal of Thrombosis and Haemostasis 02/2014; 12(2):261-272. DOI:10.1111/jth.12470 · 5.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular inflammation plays a key role in the pathogenesis of atherosclerosis. The first step in vascular inflammation is endothelial exocytosis, in which endothelial granules fuse with the plasma membrane, releasing pro-thrombotic and pro-inflammatory messenger molecules. The development of cell culture models to study endothelial exocytosis has been challenging because the factors that modulate exocytosis in vitro are not well understood. Here we report a method for studying endothelial exocytosis that optimizes extracellular matrix components, cell density, and duration of culture. Human umbilical vein endothelial cells plated on collagen I coated plates and cultured in the confluent state for 7-12 days in low serum media showed robust secretion of von Willebrand Factor when stimulated with various agonists. This exocytosis assay is rapid and applicable to high-throughput screening.
    Analytical Biochemistry 02/2014; DOI:10.1016/j.ab.2014.02.015 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
    Pharmacological reviews 02/2014; 66(2):513-69. DOI:10.1124/pr.112.007351 · 18.55 Impact Factor