Article

Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry

Department of Pharmacology, Vanderbilt University, Нашвилл, Michigan, United States
Methods in Enzymology (Impact Factor: 2.19). 02/2007; 432:21-57. DOI: 10.1016/S0076-6879(07)32002-8
Source: PubMed

ABSTRACT Glycerophospholipids are the structural building blocks of the cellular membrane. In addition to creating a protective barrier around the cell, lipids are precursors of intracellular signaling molecules that modulate membrane trafficking and are involved in transmembrane signal transduction. Phospholipids are also increasingly recognized as important participants in the regulation and control of cellular function and disease. Analysis and characterization of lipid species by mass spectrometry (MS) have evolved and advanced with improvements in instrumentation and technology. Key advances, including the development of "soft" ionization techniques for MS such as electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), and tandem mass spectrometry (MS/MS), have facilitated the analysis of complex lipid mixtures by overcoming the earlier limitations. ESI-MS has become the technique of choice for the analysis of multi-component mixtures of lipids from biological samples due to its exceptional sensitivity and capacity for high throughput. This chapter covers qualitative and quantitative MS methods used for the elucidation of glycerophospholipid identity and quantity in cell or tissue extracts. Sections are included on the extraction, MS analysis, and data analysis of glycerophospholipids and polyphosphoinositides.

0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the incidence of type-2 diabetes and hypertension, chronic kidney disease (CKD) has emerged as a major public health problem worldwide. CKD results in premature death from accelerated cardiovascular disease and various other complications. Early detection, careful monitoring of renal function, and response to therapeutic intervention are critical for prevention of CKD progression and its complications. Unfortunately, traditional biomarkers of renal function are insufficiently sensitive or specific to detect early stages of disease when therapeutic intervention is most effective. Therefore, more sensitive biomarkers of kidney disease are needed for early diagnosis, monitoring, and effective treatment. CKD results in profound changes in lipid and lipoprotein metabolism that, in turn, contribute to progression of CKD and its cardiovascular complications. Lipids and lipid-derived metabolites play diverse and critically important roles in the structure and function of cells, tissues, and biofluids. Lipidomics is a branch of metabolomics, which encompasses the global study of lipids and their biologic function in health and disease including identification of biomarkers for diagnosis, prognosis, prevention, and therapeutic response for various diseases. This review summarizes recent developments in lipidomics and its application to various kidney diseases including chronic glomerulonephritis, IgA nephropathy, chronic renal failure, renal cell carcinoma, diabetic nephropathy, and acute renal failure in clinical and experimental research. Analytical technologies, data analysis, as well as currently known metabolic biomarkers of kidney diseases are addressed. Future perspectives and potential limitations of lipidomics are discussed. © 2015 Elsevier Inc. All rights reserved.
    Advances in clinical chemistry 02/2015; 68:153-175. DOI:10.1016/bs.acc.2014.11.002 · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Altered phospholipid (PL) metabolism has been associated with pregnancy disorders. Moreover, lipid molecules such as endocannabinoids (eCBs) and prostaglandins (PGs) are important mediators of reproductive events. In humans, abnormal decidualization has been linked with unexplained infertility, miscarriage and endometrial pathologies. Anandamide (AEA), the major eCB, induces apoptosis in rat decidual cells. In this study, the PL profile of rat decidual cells was characterized by a Mass spectrometry (MS) based lipidomic approach. Furthermore, we analyzed a possible correlation between changes in PL of rat decidual cells' membrane and AEA-induced apoptosis. We found an increase in phosphatidylserine and a reduction of cardiolipin and phophatidylinositol relative contents. In addition, we observed an increase in the content of alkyl(alkenyl)acylPL, plasmalogens, and of long chain fatty acids especially with high degrees of unsaturation, as well as an increase in lipid hydroperoxides in treated cells. These findings provide novel insights on deregulation of lipid metabolism by anandamide, which may display further implications in decidualization process. This article is protected by copyright. All rights reserved
    Journal of Cellular Physiology 12/2014; 230(7). DOI:10.1002/jcp.24901 · 3.87 Impact Factor
  • Source
    Dataset: mnfr1966