Article

Maintenance treatment with fluoxetine is necessary to sustain normal levels of synaptic markers in an experimental model of depression: correlation with behavioral response.

Instituto de Investigaciones Farmacológicas (ININFA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
Neuropsychopharmacology (Impact Factor: 8.68). 08/2008; 33(8):1896-908. DOI: 10.1038/sj.npp.1301596
Source: PubMed

ABSTRACT Dysfunction of hippocampal plasticity has been proposed to play a critical role in the pathophysiology of depression. However, antidepressant drug effects on synaptic plasticity and cytoskeletal remodeling remain controversial. The aim of the present study was to evaluate in animals exposed to the learned helplessness (LH) paradigm, an accepted experimental model of depression, the effect of chronic treatment with fluoxetine (FLX) on synaptic and cytoskeletal proteins known to undergo plastic changes. Synaptophysin (SYN), postsynaptic density 95 (PSD-95), axon growth-associated protein 43 (GAP-43), and cytoskeletal proteins (intermediate neurofilaments and MAP-2) were studied in the hippocampus by immunohistochemistry. Whereas LH animals treated 21 days with saline (LH-S group) displayed diminished SYN and PSD-95 immunostainings in the CA3 but not in the DG, chronic treatment with FLX not only reversed the despaired behavior induced by exposure to LH paradigm, but also fully recovered SYN and PSD-95 labeling to control values. Similar results were obtained for the axonal remodeling marker GAP-43. FLX treatment did not modify either the decreased light neurofilament subunit (NFL) observed in the hippocampus of LH animals or any other cytoskeletal protein studied. When FLX treatment was withdrawn for 90 days in those LH-FLX animals in which reversion of despair had been observed at day 25, recurrence of despaired behavior was found accompanied by decreased SYN, PSD-95, and NFL labelings. Results indicate that the synapse remodeling induced by FLX in the CA3 region could underlie its behavioral efficacy despite the absence of cytoskeletal remodeling and that the stability of synaptic changes would depend on the continuous administration of the drug.

0 Bookmarks
 · 
56 Views
  • Source
    Recent Advances in Theories and Practice of Chinese Medicine, 01/2012; , ISBN: 978-953-307-903-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RATIONALE: Stress is a common antecedent reported by people suffering major depression. In these patients, extrahypothalamic brain areas, like the hippocampus and basolateral amygdala (BLA), have been found to be affected. The BLA synthesizes CRF, a mediator of the stress response, and projects to hippocampus. The main hippocampal target for this peptide is the CRF subtype 1 receptor (CRF1). Evidence points to a relationship between dysregulation of CRF/CRF1 extrahypothalamic signaling and depression. OBJECTIVE: Because selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for depression, we investigated the effect of chronic treatment with the SSRI fluoxetine on long-term changes in CRF/CRF1 signaling in animals showing a depressive-like behavior. METHODS: Male Wistar rats were exposed to the learned helplessness paradigm (LH). After evaluation of behavioral impairment, the animals were treated with fluoxetine (10 mg/kg i.p.) or saline for 21 days. We measured BLA CRF expression with RT-PCR and CRF1 expression in CA3 and the dentate gyrus of the hippocampus with in situ hybridization. We also studied the activation of one of CRF1's major intracellular signaling targets, the extracellular signal-related kinases 1 and 2 (ERK1/2) in CA3. RESULTS: In saline-treated LH animals, CRF expression in the BLA increased, while hippocampal CRF1 expression and ERK1/2 activation decreased. Treatment with fluoxetine reversed the changes in CRF and CRF1 expressions, but not in ERK1/2 activation. CONCLUSION: In animals exposed to the learned helplessness paradigm, there are long-term changes in CRF and CRF1 expression that are restored with a behaviorally effective antidepressant treatment.
    Psychopharmacology 09/2012; · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modelling of complex psychiatric disorders, e.g., depression and schizophrenia, in animals is a major challenge, since they are characterized by certain disturbances in functions that are absolutely unique to humans. Furthermore, we still have not identified the genetic and neurobiological mechanisms, nor do we know precisely the circuits in the brain that function abnormally in mood and psychotic disorders. Consequently, the pharmacological treatments used are mostly variations on a theme that was started more than 50 years ago. Thus, progress in novel drug development with improved therapeutic efficacy would benefit greatly from improved animal models. Here, we review the available animal models of depression and schizophrenia and focus on the way that they respond to various types of potential candidate molecules, such as novel antidepressant or antipsychotic drugs, as an index of predictive validity. We conclude that the generation of convincing and useful animal models of mental illnesses could be a bridge to success in drug discovery.
    Cell and Tissue Research 08/2013; · 3.68 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
Oct 8, 2014