American Society of Clinical Oncology 2007 Update of Recommendations for the Use of Tumor Markers in Breast Cancer

Memorial Sloan-Kettering Cancer Center, New York, New York, United States
Journal of Clinical Oncology (Impact Factor: 18.43). 12/2007; 25(33):5287-312. DOI: 10.1200/JCO.2007.14.2364
Source: PubMed

ABSTRACT To update the recommendations for the use of tumor marker tests in the prevention, screening, treatment, and surveillance of breast cancer.
For the 2007 update, an Update Committee composed of members from the full Panel was formed to complete the review and analysis of data published since 1999. Computerized literature searches of MEDLINE and the Cochrane Collaboration Library were performed. The Update Committee's literature review focused attention on available systematic reviews and meta-analyses of published tumor marker studies. In general, significant health outcomes (overall survival, disease-free survival, quality of life, lesser toxicity, and cost-effectiveness) were used for making recommendations. Recommendations and
Thirteen categories of breast tumor markers were considered, six of which were new for the guideline. The following categories showed evidence of clinical utility and were recommended for use in practice: CA 15-3, CA 27.29, carcinoembryonic antigen, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, urokinase plasminogen activator, plasminogen activator inhibitor 1, and certain multiparameter gene expression assays. Not all applications for these markers were supported, however. The following categories demonstrated insufficient evidence to support routine use in clinical practice: DNA/ploidy by flow cytometry, p53, cathepsin D, cyclin E, proteomics, certain multiparameter assays, detection of bone marrow micrometastases, and circulating tumor cells.

Download full-text


Available from: Robert Mennel, Sep 18, 2014
  • Source
    • "Therefore, in line with other breast cancer treatment modalities, the application of chemotherapy is becoming increasingly individualised, and over-treatment avoided wherever possible. To this end, international guidelines recommend inclusion of gene expression analysis in risk stratification and decisionmaking in prescription of adjuvant systemic therapy [10] [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Introduction The use of chemotherapy in node-negative, (O)Estrogen Receptor (ER)-positive breast cancer has changed significantly since the introduction of Oncotype DX to determine systemic recurrence risk based on tumour genomic signature. Aims This study aims to: 1.Document longitudinal changes in chemotherapy use, 2.Assess the impact of new evidence on local protocol. Methods A cohort study was undertaken, including consecutive patients with early node-negative, ER-positive breast cancer diagnosed between 2006 and May 2013, including a period of prospective clinical trial (Trial Assigning Individualised Options for Treatment (TAILORx)) recruitment. Data were collected regarding patient demographics, tumour clinico-pathological features, Oncotype DX use and recurrence score and chemotherapy use. All therapeutic decisions were made following multidisciplinary discussion, with adherence to guidelines and consideration of trial protocol and Oncotype DX recurrence scores. Results 479 consecutive patients were included in the study, of whom 241 (50%) underwent Oncotype DX testing, 97 as part of the TAILORx clinical trial. Oncotype DX testing began on a trial basis in 2007 and until October 2011, only patients enrolled on TAILORx availed of genomic profiling. From October 2011, Oncotype DX was used in all eligible patients as per National Cancer Control Programme (NCCP) guidelines. A total of 216 (45%) patients received chemotherapy. The use of chemotherapy changed in inverse proportion to the availability of the genomic assay. Of those patients in whom Oncotype DX was utilised, 138 (57%) were spared chemotherapy. Conclusion This study validates the use of molecular testing in the rationalisation of systemic therapy.
    European Journal of Cancer 09/2014; 50(16). DOI:10.1016/j.ejca.2014.08.002 · 4.82 Impact Factor
  • Source
    • "According to the American Society of Clinical Oncology [3], breast cancers express some additional markers that have been shown to be useful in clinic: CA15-3, CA27.29, carcinoembryonic antigen (CEA), urokinase plasminogen activator, and plasminogen activator inhibitor 1, among others . Several of these markers are cell surface transmembrane proteins, including ERBB2 and CEA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors.
    09/2013; 2013:976816. DOI:10.1155/2013/976816
  • Source
    • "These differences may be due to heterogeneous group of population, different methods for assaying Ki67, or different cutoffs to designate high or low Ki67. As a result, the American Society of Clinical Oncology (ASCO) Tumor Marker Guidelines Committee proposed that the evidence supporting the clinical utility of Ki67 was insufficient to recommend routine use of this marker for prognosis in patients with newly diagnosed breast cancer (Harris et al., 2007). Therefore Ki67 losses its significance in isolation and it should be assessed in correlation with other prognostic factors in more narrowly defined tumor subgroups. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Breast cancer aggressiveness can be correlated with proliferation status of tumor cells, which can be ascertained with tumor grade and Ki67 indexing. However due to lack of reproducibility, the ASCO do not recommend routine use of Ki67 in determining prognosis in newly diagnosed breast cancers. We therefore aimed to determine associations of the Ki67 index with other prognostic markers like tumor size, grade, lymph node metastasis, ER, PR and HER2neu status. Methods: A total of 194 cases of newly diagnosed breast cancer were included in the study. Immunohistochemical staining for ER, PR, HER2neu and Ki67 was performed by the DAKO envision method. Associations of the Ki67 index with other prognostic factors were evaluated both as continuous and categorical variables. Results: Mean age of the patients was 51.7 years (24-90). Mean Ki67 index was 26.9% (1-90). ER, PR, HER2neu positivity was noted in 90/194 cases (46.4%), 74/194 cases (38.1%) and 110/194 cases (56.70%) respectively. Significant association was found between Ki67 and tumor grade, PR, HER2neu positivity and lymph node status, but no link was apparent with ER positivity and tumor size. There wasan inverse relation between Ki67 index and PR positivity, whereas a direct correlation was seen with HER2neu positivity. However, high Ki67 (>30%) was associated with decreased HER2neu positivity as compared to intermediate Ki67 (16-30%). The same trend was established with lymph node metastasis. Conclusion: Our study indicates that with high grade tumors, clinical utility of ki67 is greater in combination with other prognostic markers because we found that tumors with Ki67 higher than 30% have better prognostic profile compared to tumors with intermediate Ki67 level, as reflected by slightly lower frequency of lymph node metastasis and HER2neu expression. Therefore we suggest that Ki67 index should be categorized into high, intermediate and low groups when considering adjuvant chemotherapy and prognostic stratification.
    Asian Pacific journal of cancer prevention: APJCP 07/2013; 14(7):4353-8. DOI:10.7314/APJCP.2013.14.7.4353 · 2.51 Impact Factor
Show more