Nicotinamide Uncouples Hormone-Dependent Chromatin Remodeling from Transcription Complex Assembly

Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS/NIH, 111 Alexander Drive, P.O. Box 12233 (MD D4-01), Research Triangle Park, NC 27709, USA.
Molecular and Cellular Biology (Impact Factor: 4.78). 02/2008; 28(1):30-9. DOI: 10.1128/MCB.01158-07
Source: PubMed


Sirtuins, homologs of the yeast SIR2 family, are protein deacetylases that require nicotinamide adenosine dinucleotide as cofactor. To determine whether the sirtuin family of deacetylases is involved in progesterone receptor (PR)-mediated transcription, the effect of sirtuin inhibitor, nicotinamide (NAM), was monitored in T47D breast cancer cells. NAM suppressed hormone-dependent activation of PR-regulated genes in a dose-dependent manner. Surprisingly, NAM-mediated inhibition of PR-mediated transcription occurs independently of SIRT1 and PARP1. Chromatin immunoprecipitation experiments did not show that PR binding nor that of the coactivators CBP and SRC3 was compromised. Consistent with the recruitment of the BRG1 chromatin remodeling complex, promoter chromatin remodeling still occurs despite NAM inhibition of PR transactivation. Rather, we show that this inhibition of transcription is due to dramatic loss of recruitment of the basal transcriptional machinery to the promoter. These results show that NAM uncouples promoter chromatin remodeling from transcription preinitiation complex assembly and suggest the existence of vital NAM-regulated steps required for promoter chromatin remodeling and basal transcription complex communication.

Download full-text


Available from: Trevor K Archer,
12 Reads
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, not promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients.
    Biomedecine [?] Pharmacotherapy 04/2008; 62(4):218-32. DOI:10.1016/j.biopha.2008.01.009 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinamide at mM concentration is a potent inhibitor of certain key molecules involved in cell survival, such as SIRT1 and PARP-1, and affects cell survival in various conditions in vivo and in vitro. However, the effect of an acute treatment of nicotinamide on gene expression has rarely been closely examined. In our study, the treatment of 10mM nicotinamide downregulated p21WAF1 expression in various human cells including p53-negative or SIRT1-knockdown cells indicating gene regulation not mediated by p53 or SIRT1. Meanwhile, in the nicotinamide-treated cells, Sp1 activity and protein level was substantially reduced due to increased proteasome-mediated degradation. Our results indicate that nicotinamide treatment attenuates p21WAF1 expression through Sp1 downregulation, and suggest a possible involvement of nicotinamide metabolism in cellular gene expression.
    Biochemical and Biophysical Research Communications 05/2008; 368(2):298-304. DOI:10.1016/j.bbrc.2008.01.082 · 2.30 Impact Factor
Show more