Article

Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development.

Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556-0369, USA.
Journal of Evolutionary Biology (Impact Factor: 3.48). 12/2007; 20(6):2101-12. DOI: 10.1111/j.1420-9101.2007.01435.x
Source: PubMed

ABSTRACT Variation in the overwintering pupal diapause of Rhagoletis pomonella appears to adapt sympatric populations of the fly to seasonal differences in the fruiting times of their host plants, generating ecological reproductive isolation. Here, we investigate what aspects of diapause development are differentially affected (1) by comparing the propensities of apple vs. hawthorn-infesting host races of R. pomonella to forgo an initially deep diapause and directly develop into adults, and (2) by determining the chronological order that R. pomonella races and sibling species break diapause and eclose when reared under standardized environmental conditions. The results imply that factors affecting initial diapause depth (and/or differential mortality during the prewintering period) and those determining the timing of diapause termination or rates of post-diapause development are both under differential selection and are to some degree genetically uncoupled in flies. The modular nature of diapause life history adaptation in Rhagoletis suggests that phenology may involve multiple genetic changes and represent a stronger ecological barrier separating phytophagous specialists than is generally appreciated.

0 Bookmarks
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of related populations varying in their degrees of reproductive isolation can provide insights into speciation. Here, the transition from partially isolated host races to more fully separated sibling species is investigated by comparing patterns of genetic differentiation between recently evolved (∼150 generations) apple and ancestral hawthorn-infesting populations of Rhagoletis pomonella to their sister taxon, the undescribed flowering dogwood fly attacking Cornus florida. No fixed or diagnostic private alleles differentiating the three populations were found at any of 23 microsatellites and 10 allozymes scored. Nevertheless, allele frequency differences were sufficient across loci for flowering dogwood fly populations from multiple localities to form a diagnosable genotypic cluster distinct from apple and hawthorn flies, indicative of species status. Genome-wide patterns of differentiation were correlated between the host races and species pair comparisons along the majority of chromosomes, suggesting that similar disruptive selection pressures affect most loci. However, differentiation was more pronounced, with some additional regions showing elevated divergence, for the species pair comparison. Our results imply that Rhagoletis sibling species such as the flowering dogwood fly represent host races writ large, with the transition to species status primarily resulting from increased divergence of the same regions separating apple and hawthorn flies.
    Evolution 09/2013; 67(9):2561-76. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular techniques are revealing increasing numbers of morphologically similar but co-existing cryptic species, challenging the niche theory. To understand the co-existence mechanism, we studied phenologies of morphologically similar species of fig wasps that pollinate the creeping fig (F. pumila) in eastern China. We compared phenologies of fig wasp emergence and host flowering at sites where one or both pollinators were present. At the site where both pollinators were present, we used sticky traps to capture the emerged fig wasps and identified species identity using mitochondrial DNA COI gene. We also genotyped F. pumila individuals of the three sites using polymorphic microsatellites to detect whether the host populations were differentiated. Male F. pumila produced two major crops annually, with figs receptive in spring and summer. A small partial third crop of receptive figs occurred in the autumn, but few of the second crop figs matured at that time. Hence, few pollinators were available to enter third crop figs and they mostly aborted, resulting in two generations of pollinating wasps each year, plus a partial third generation. Receptive figs were produced on male plants in spring and summer, timed to coincide with the release of short-lived adult pollinators from the same individual plants. Most plants were pollinated by a single species. Plants pollinated by Wiebesia sp. 1 released wasps earlier than those pollinated by Wiebesia sp. 3, with little overlap. Plants occupied by different pollinators were not spatially separated, nor genetically distinct. Our findings show that these differences created mismatches with the flight periods of the other Wiebesia species, largely 'reserving' individual plants for the resident pollinator species. This pre-emptive competitive displacement may prevent long term co-existence of the two pollinators.
    PLoS ONE 01/2014; 9(5):e97783. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ecological speciation-with-gene-flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana), and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the North. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation-with-gene-flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself. This article is protected by copyright. All rights reserved.
    Molecular Ecology 12/2013; · 6.28 Impact Factor