Article

Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia.

CNRS UMR 6061 Laboratoire de Génétique et Développement, Equipe Régulation transcriptionnelle et oncogenèse, Université de Rennes-1, Faculté de Médecine, IFR140 GFAS, 2 av du Pr Léon Bernard, CS 34317, Rennes cedex, France.
BMC Genomics (Impact Factor: 4.4). 02/2007; 8:385. DOI: 10.1186/1471-2164-8-385
Source: PubMed

ABSTRACT The t(12;21)(p13;q22) translocation is found in 20 to 25% of cases of childhood B-lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of ETV6 (TEL) and RUNX1 (AML1) genes and defines a relatively uniform category, although only some patients suffer very late relapse. TEL/AML1-positive patients are thus an interesting subgroup to study, and such studies should elucidate the biological processes underlying TEL/AML1 pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR.
We compared the leukemia cell gene expression profiles of 16 TEL/AML1-positive ALL patients to those of 44 TEL/AML1-negative patients, whose blast cells did not contain any additional recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes differentially expressed between the TEL/AML1-positive and negative ALL groups. Gene enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation, apoptosis, cell motility and response to wounding, associated with 14 genes -RUNX1, TCFL5, TNFRSF7, CBFA2T3, CD9, SCARB1, TP53INP1, ACVR1C, PIK3C3, EGFL7, SEMA6A, CTGF, LSP1, TFPI - highlighting the biology of the TEL/AML1 sub-group. These results were first confirmed by the analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR quantification and clustering using an independent set (27 patient samples). Over-expression of RUNX1 (AML1) was further investigated and in one third of the patients correlated with cytogenetic findings.
Gene expression analyses of leukemia cells from 60 children with TEL/AML1-positive and -negative B-lineage ALL led to the identification of five biological processes, associated with 14 validated genes characterizing and highlighting the biology of the TEL/AML1-positive ALL sub-group.

0 Bookmarks
 · 
206 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ETV6/RUNX1 (E/R) gene fusion is generated by the t(12;21) and found in approximately 25% of childhood B-cell precursor acute lymphoblastic leukemia. In contrast to the overwhelming evidence that E/R is critical for the initiation of leukemia, its relevance for the maintenance of overt disease is less clear. To investigate this issue, we suppressed the endogenous E/R fusion protein with lentivirally transduced short hairpin RNA in the leukemia cell lines REH and AT-2, and found a distinct reduction of proliferation and cell survival. In line with the observed concurrent inactivation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, pharmacological inhibition diminished the phosphorylation of AKT and ribosomal protein S6, and significantly increased the apoptosis rate in E/R-positive leukemias. Moreover, PI3K/mTOR inhibitors sensitized glucocorticoid-resistant REH cells to prednisolone, an observation of potential relevance for improving treatment of drug-resistant relapses. Of note, knockdown of the E/R fusion gene also severely impaired the repopulation capacity of REH cells in non-obese deficient/severe combined immunodeficient mice. Collectively, these data demonstrate that the E/R fusion protein activates the PI3K/AKT/mTOR pathway and is indispensible for disease maintenance. Importantly, these results provide a first rationale and justification for targeting the fusion gene and the PI3K/AKT/mTOR pathway therapeutically.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 11/2011; 26(5):927-33. · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thrombin and hypoxia are important players in breast cancer progression. Breast cancers often develop drug resistance, but mechanisms linking thrombin and hypoxia to drug resistance remain unresolved. Our studies using Doxorubicin (DOX) resistant MCF7 breast cancer cells reveals a mechanism linking DOX exposure with hypoxic induction of DOX resistance. Global expression changes between parental and DOX resistant MCF7 cells were examined. Westerns, Northerns and immunocytochemistry were used to validate drug resistance and differentially expressed genes. A cluster of genes involved in the anticoagulation pathway, with Tissue Factor Pathway Inhibitor 1 (TFPI1) the top hit, was identified. Plasmids overexpressing TFPI1 were utilized, and 1% O2 was used to test the effects of hypoxia on drug resistance. Lastly, microarray datasets from patients with drug resistant breast tumors were interrogated for TFPI1 expression levels. TFPI1 protein levels were found elevated in 3 additional DOX resistant cells lines, from humans and rats, indicating evolutionarily conservation of the effect. Elevated TFPI1 in DOX resistant cells was active, as thrombin protein levels were coincidentally low. We observed elevated HIF1α protein in DOX resistant cells, and in cells with forced expression of TFPI1, suggesting TFPI1 induces HIF1α. TFPI1 also induced c-MYC, c-SRC, and HDAC2 protein, as well as DOX resistance in parental cells. Growth of cells in 1% O2 induced elevated HIF1α, BCRP and MDR-1 protein, and these cells were resistant to DOX. Our in vitro results were consistent with in vivo patient datasets, as tumors harboring increased BCRP and MDR-1 expression also had increased TFPI1 expression. Our observations are clinically relevant indicating that DOX treatment induces an anticoagulation cascade, leading to inhibition of thrombin and the expression of HIF1α. This in turn activates a pathway leading to drug resistance.
    PLoS ONE 01/2014; 9(1):e84611. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation.
    Blood Cancer Journal 01/2013; 3:e151. · 1.40 Impact Factor

Full-text (2 Sources)

Download
47 Downloads
Available from
Jun 3, 2014