Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system

Department of Bioscience and Biotechnology, Okayama University, Okayama, Japan.
Journal of the American Chemical Society (Impact Factor: 11.44). 12/2007; 129(46):14458-62. DOI: 10.1021/ja075557u
Source: PubMed

ABSTRACT Nonnatural amino acids have been introduced into proteins using expanded protein biosynthesis systems. However, some nonnatural amino acids, especially those containing large aromatic groups, are not efficiently incorporated into proteins. Reduced binding efficiency of aminoacylated tRNAs to elongation factor Tu (EF-Tu) is likely to limit incorporation of large amino acids. Our previous studies suggested that tRNAs carrying large nonnatural amino acids are bound less tightly to EF-Tu than natural amino acids. To expand the availability of nonnatural mutagenesis, EF-Tu from the E. coli translation system was improved to accept such large amino acids. We synthesized EF-Tu mutants, in which the binding pocket of the aminoacyl moiety of aminoacyl-tRNA was enlarged. L-1-Pyrenylalanine, L-2-pyrenylalanine, and DL-2-anthraquinonylalanine, which are hardly or only slightly incorporated with the wild-type EF-Tu, were successfully incorporated into a protein using these EF-Tu mutants.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Translation systems with four-base codons provide a powerful strategy for protein engineering and protein studies because they enable site-specific incorporation of non-natural amino acids into proteins. In this study, a caged aminoacyl-tRNA with a four-base anticodon was synthesized. The caged aminoacyl-tRNA contains a photocleavable nitroveratryloxycarbonyl (NVOC) group. This study showed that the caged aminoacyl-tRNA was not deacylated, did not bind to EF-Tu, and was activated by light. Photo-dependent translation of an mRNA containing the four-base codon was demonstrated using the caged aminoacyl-tRNA.
    Bioorganic & Medicinal Chemistry Letters 10/2014; 24(23). DOI:10.1016/j.bmcl.2014.10.053 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR), caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR), and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing.
    PLoS ONE 02/2015; 10(2):e0117702. DOI:10.1371/journal.pone.0117702 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence methods allow one to monitor protein conformational changes, protein-protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein's fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Forster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.
    Australian Journal of Chemistry 01/2014; 67(5):686. DOI:10.1071/CH13554 · 1.64 Impact Factor