Electroacupuncture attenuates bone cancer pain and inhibits spinal interleukin-1 beta expression in a rat model

Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA.
Anesthesia and analgesia (Impact Factor: 3.42). 11/2007; 105(5):1482-8, table of contents. DOI: 10.1213/01.ane.0000284705.34629.c5
Source: PubMed

ABSTRACT Although pain affects the quality of life of cancer patients, current medical treatments are either ineffective or have side effects. In the present study we investigated the effect of electroacupuncture (EA) on cancer-induced hyperalgesia and expression of interleukin-1beta (IL-1beta), upregulation of which is related to the maintenance of persistent pain, in a rat model of bone cancer pain.
Cancer was induced by injecting AT-3.1 prostate cancer cells into the tibia of male Copenhagen rats. The resulting pain was treated with 10 Hz/2 mA/0.4 ms pulse EA for 30 min daily at the equivalent of the human acupoint GB30 (Huantiao) between Days 14 and 18 after cancer cell inoculation. For sham control, EA needles were inserted into GB30 without stimulation. Thermal hyperalgesia, a decrease in paw withdrawal latency to a noxious thermal stimulus, was measured at baseline and 20 min after EA treatment. IL-1beta and its mRNA were respectively determined by immunohistochemistry and reverse transcription-polymerase chain reaction analysis.
Thermal hyperalgesia developed between Days 12 and 18 after cancer cell inoculation. EA significantly (P < 0.05) attenuated this hyperalgesia, increasing paw withdrawal latency from 7.0 +/- 0.3 s to 9.2 +/- 0.4 s, and inhibited the upregulation of IL-1beta and its mRNA compared to the sham control. Intrathecal injection of IL-1 receptor antagonist (IL-1ra, 0.1 mg/rat) also significantly inhibited cancer-induced thermal hyperalgesia.
The data suggest that EA alleviates bone cancer pain, at least in part by suppressing IL-1beta expression. The results support the clinical use of EA in the treatment of cancer pain.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture is generally accepted as a safe and harmless treatment option for alleviating pain. To explore the pain mechanism, numerous animal models have been developed to simulate specific human pain conditions, including cancer-induced bone pain (CIBP). In this study, we analyzed the current research methodology of acupuncture for the treatment of CIBP. We electronically searched the PubMed database for animal studies published from 2000 onward using these search terms: (bone cancer OR cancer) AND (pain OR analgesia) AND (acupuncture OR pharmacopuncture OR bee venom). We selected articles that described cancer pain in animal models. We analyzed the methods used to induce cancer pain and the outcome measures used to assess the effects of acupuncture on CIBP in animal models. We reviewed articles that met our inclusion criteria. Injection of mammary cancer cells into the cavity of the tibia was the most frequently used method for inducing CIBP in the animal models. Among the eight selected studies, five studies demonstrated the effects of electroacupuncture on CIBP. The effects of acupuncture were assessed by measuring pain-related behavior. Future researches will be needed to ascertain the effectiveness of acupuncture for treating CIBP and to explore the specific mechanism of CIBP in animal models.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:191347. DOI:10.1155/2014/191347 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue injury (inflammatory), nerve injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2 to 10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce proinflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal N-methyl-D-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management which can forestall the side effects of often-debilitating pharmaceuticals.
    Anesthesiology 12/2013; 120(2). DOI:10.1097/ALN.0000000000000101 · 6.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The global burden of cancer pain is enormous and opioids, despite their side effects, remain the primary therapeutic approach. The cause of cancer pain is unknown. Mechanisms driving cancer pain differ from those mechanisms responsible for inflammatory and neuropathic pain. The prevailing hypothesis put forward to explain cancer pain posits that cancers generate and secrete mediators which sensitize and activate primary afferent nociceptors in the cancer microenvironment. Moreover, cancers induce neurochemical reorganization of the spinal cord, which contributes to spontaneous activity and enhanced responsiveness. The purpose of this review, which covers clinical and preclinical studies, is to highlight those peripheral and central mechanisms responsible for cancer pain. The challenges facing neuroscientists and clinicians studying and ultimately treating cancer pain are discussed.
    The Neuroscientist 03/2014; DOI:10.1177/1073858414525828 · 7.62 Impact Factor