Article

Recreational physical activity and risk of Parkinson's disease.

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. <>
Movement Disorders (Impact Factor: 5.63). 01/2008; 23(1):69-74. DOI: 10.1002/mds.21772
Source: PubMed

ABSTRACT The purpose of this study was to investigate associations between recreational physical activity and Parkinson's disease (PD) risk. We prospectively followed 143,325 participants in the Cancer Prevention Study II Nutrition Cohort from 1992 to 2001 (mean age at baseline = 63). Recreational physical activity was estimated at baseline from the reported number of hours per week on average spent performing light intensity activities (walking, dancing) and moderate to vigorous intensity activities (jogging/running, lap swimming, tennis/racquetball, bicycling/stationary bike, aerobics/calisthenics). Incident cases of PD (n = 413) were confirmed by treating physicians and medical record review. Relative risks (RR) were estimated using proportional hazards models, adjusting for age, gender, smoking, and other risk factors. Risk of PD declined in the highest categories of baseline recreational activity. The RR comparing the highest category of total recreational activity (men > or = 23 metabolic equivalent task-hours/week [MET-h/wk], women > or = 18.5 MET-h/wk) to no activity was 0.8 (95% CI: 0.6, 1.2; P trend = 0.07). When light activity and moderate to vigorous activity were examined separately, only the latter was found to be associated with PD risk. The RR comparing the highest category of moderate to vigorous activity (men > or = 16 MET-h/wk, women > or = 11.5 MET-h/wk) to the lowest (0 MET-h/wk) was 0.6 (95% CI: 0.4, 1.0; P trend = 0.02). These results did not differ significantly by gender. The results were similar when we excluded cases with symptom onset in the first 4 years of follow-up. Our results may be explained either by a reduction in PD risk through moderate to vigorous activity, or by decreased baseline recreational activity due to preclinical PD.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tai Chi Chuan steigert wirksam Gleichgewichtsleistungen und balanceabhängige Gangparameter. Neben einer aktivierenden Physiotherapie eingesetzt, erweitert Tai Chi Chuan die Palette der Trainingsoptionen bei Parkinson. Gleichgewicht und Gehfähigkeit können in frühen Stadien verbessert werden und die Sturzinzidenz sinkt, wie neuere Studien belegen.
    MMW Fortschritte der Medizin 05/2013; 155(8):52-54.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advances in pharmacologic management, deficits in gait and gait-related activities remain persistent in Parkinson disease (PD), resulting in reduced safety and ADL independence. Alternative rehabilitative allied health approaches to the management of these problems, such as physical therapy or exercise training, are, therefore, important. We summarize literature on neuroprotective and neurorestorative effects of physical exercise. Next, we discuss data on the importance of exercise training with external rhythmic cues and summarize literature, demonstrating usefulness of goal-based exercise training with external cues on gait and gait-related activities in PD. The underlying mechanisms of cueing-induced neuroplasticity in PD are still unclear. It is also unclear whether cueing training can elicit neuroplastic effects comparable with those of regular exercise. Throughout this article, we maintain the following data-driven observations: (1) physical exercise can decrease the risk of later-developing PD, and evidence from animal studies suggests that neuronal cell death in the substantia nigra can be prevented through an exercise-induced increase in neurotrophic factors; (2) physical exercise has the potential to mitigate the effects of PD through an enhanced efficiency of dopamine transmission; (3) all modalities of cueing training can improve gait and gait-related activities in PD; (4) although no direct evidence for neuroprotective or neurorestorative effects of cueing training can be found, we predict that compensatory mechanisms play a role in cueing training, since externally triggered movements are thought to bypass the affected basal ganglia circuitry and activate the premotor cortex, cerebellum, and parietal cortex; and (5) learning-related improvements in motor function as a result of cueing training are likely to be accompanied by neuronal adaptations. The immediate effects of cueing training may relate to compensatory neuronal pathways that are not directly involved during regular exercise. We pose that external cueing facilitates the conditions for goal-based exercise training to improve gait and gait-related activities of patients with PD. The improved motor performance may result in increased exercise capacity and daily physical activity and as such indirectly affect neuroprotective and neurorestorative mechanisms comparable with regular exercise.
    Topics in Geriatric Rehabilitation 01/2014; 30(1):46-57. · 0.14 Impact Factor
  • Frontiers in Bioscience 01/2009; Volume(14):1642. · 4.25 Impact Factor

Preview

Download
0 Downloads
Available from