Article

Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner

Gallo Research Center, Department of Neurology, University of California-San Francisco, Emeryville, CA 94608, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2008; 283(1):301-10. DOI: 10.1074/jbc.M705580200
Source: PubMed

ABSTRACT The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.

0 Followers
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.
    Cell Reports 10/2014; 9(2). DOI:10.1016/j.celrep.2014.09.017 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neurotrophin brain-derived neurotrophic factor (BDNF) mediates activity-dependent long-term changes of synaptic strength in the CNS. The effects of BDNF are partly mediated by stimulation of local translation, with consequent alterations in the synaptic proteome. The ubiquitin-proteasome system (UPS) also plays an important role in protein homeostasis at the synapse by regulating synaptic activity. However, whether BDNF acts on the UPS to mediate the effects on long-term synaptic potentiation (LTP) has not been investigated. In the present study, we show similar and nonadditive effects of BDNF and proteasome inhibition on the early phase of synaptic potentiation (E-LTP) induced by theta-burst stimulation of rat hippocampal CA1 synapses. The effects of BDNF were blocked by the proteasome activator IU1, suggesting that the neurotrophin acts by decreasing proteasome activity. Accordingly, BDNF downregulated the proteasome activity in cultured hippocampal neurons and in hippocampal synaptoneurosomes. Furthermore, BDNF increased the activity of the deubiquitinating enzyme UchL1 in synaptoneurosomes and upregulated free ubiquitin. In contrast to the effects on posttetanic potentiation, proteasome activity was required for BDNF-mediated LTP. These results show a novel role for BDNF in UPS regulation at the synapse, which is likely to act together with the increased translation activity in the regulation of the synaptic proteome during E-LTP. Copyright © 2015 the authors 0270-6474/15/353319-11$15.00/0.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have found that the large intracellular loop of the γ2 GABAAR subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast-two-hybrid and in vitro pull-down assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/non-ubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by Leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the second postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation.
    Journal of Biological Chemistry 09/2014; 289(42). DOI:10.1074/jbc.M114.603068 · 4.60 Impact Factor

Full-text (2 Sources)

Download
38 Downloads
Available from
May 21, 2014