Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats.

Bone Tissue Engineering Lab., Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld 4059, Australia.
Bone (Impact Factor: 3.82). 01/2008; 42(1):81-9. DOI: 10.1016/j.bone.2007.08.048
Source: PubMed

ABSTRACT In both physiological and pathological processes, periosteum plays a determinant role in bone formation and fracture healing. However, no specific report is available so far focusing on the detailed structural and major cellular differences between the periostea covering different bone surface in relation to ageing. The aim of this study is to compare the structural and cellular differences in diaphyseal and metaphyseal periostea in different aged rats using histological and immunohistochemical methods. Four female Lewis rats from each group of juvenile (7 weeks old), mature (7 months old) and aged groups (2 years old) were sacrificed and the right femur of each rat was retrieved, fixed, decalcified and embedded. Five-micrometer thick serial sagittal sections were cut and stained with Hematoxylin and Eosin, Stro-1 (stem cell marker), F4/80 (macrophage marker), TRAP (osteoclast marker) and vWF (endothelial cell marker). One-millimeter lengths of middle diaphyseal and metaphyseal periosteum were selected for observation. The thickness, total cell number and positive cell number for each antibody were measured and compared in each periosteal area and different aged groups. The results were subjected to two-way ANOVA and SNK tests. The results showed that the thickness and cell number in diaphyseal periosteum decreased with age (p<0.001). In comparison with diaphyseal area, the thickness and cell number in metaphyseal periosteum were much higher (p<0.001). There were no significant differences between the juvenile and aged groups in the thickness and cell number in the cambial layer of metaphyseal periosteum (p>0.05). However, the juvenile rats had more Stro1(+), F4/80(+) cells and blood vessels and fewer TRAP(+) cells in different periosteal areas compared with other groups (p<0.001). The aged rats showed much fewer Stro1(+) cells, but more F4/80(+), TRAP(+) cells and blood vessels in the cambial layer of metaphyseal periosteum (p<0.001). In conclusion, structure and cell population of periosteum appear to be both age-related and site-specific. The metaphyseal periosteum of aged rats seems more destructive than diaphyseal part and other age groups. Macrophages in the periosteum may play a dual important role in osteogenesis and osteoclastogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A "sticker-like" PLGA nanosheet with microgrooved patterns is developed through a facile combination of spin coating and micropatterning techniques. The resulting microgrooved PLGA nanosheets can be physically adhered on flat or porous surfaces with excellent stability in aqueous environments and can harness the spatial arrangements of cells, which make it a promising candidate for generating biomimic periosteum for bone regenerative applications.
    Advanced Materials 03/2014; · 14.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal–diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40–45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone.
    Journal of Anatomy 04/2014; · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A stabilized tibia fracture model was used in young (8-week old) and aged (1-year old) mice to define the relative bone regenerative potential and the relative responsiveness of the periosteal progenitor population with aging and PTH 1-34 (PTH) systemic therapy. Bone regeneration was assessed through gene expressions, radiographic imaging, histology/histomorphometry, and biomechanical testing. Radiographs and microCT showed increased calcified callus tissue and enhanced bone healing in young compared to aged mice. A key mechanism involved reduced proliferation, expansion, and differentiation of periosteal progenitor cell populations in aged mice. The experiments showed that PTH increased calcified callus tissue and torsional strength with a greater response in young mice. Histology and quantitative histomorphometry confirmed that PTH increased callus tissue area due primarily to an increase in bone formation, since minimal changes in cartilage and mesenchyme tissue area occurred. Periosteum examined at 3, 5, and 7days showed that PTH increased cyclin D1 expression, the total number of cells in the periosteum, and width of the periosteal regenerative tissue. Gene expression showed that aging delayed differentiation of both bone and cartilage tissues during fracture healing. PTH resulted in sustained Col10a1 expression consistent with delayed chondrocyte maturation, but otherwise minimally altered cartilage gene expression. In contrast, PTH 1-34 stimulated expression of Runx2 and Osterix, but resulted in reduced Osteocalcin. β-catenin staining was present in mesenchymal chondroprogenitors and chondrocytes in early fracture healing, but was most intense in osteoblastic cells at later times. PTH increased active β-catenin staining in the osteoblast populations of both young and aged mice, but had a lesser effect in cartilage. Altogether the findings show that reduced fracture healing in aging involves decreased proliferation and differentiation of stem cells lining the bone surface. While PTH 1-34 enhances the proliferation and expansion of the periosteal stem cell population and accelerates bone formation and fracture healing, the effects are proportionately reduced in aged mice compared to young mice. β-catenin is induced by PTH in early and late fracture healing and is a potential target of PTH 1-34 effects.
    Bone 02/2014; · 3.82 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014