Osmotic delivery of flurbiprofen through controlled porosity asymmetric membrane capsule.

Department of Pharmacy, Fiji School of Medicine, Suva, Fiji Islands.
Drug Development and Industrial Pharmacy (Impact Factor: 1.54). 11/2007; 33(10):1135-41. DOI: 10.1080/03639040701386087
Source: PubMed

ABSTRACT The release of poorly water-soluble drug, flurbiprofen, through asymmetric membrane capsule of cellulose acetate containing different pore forming agents like glycerol, polyethylene glycol 400, and dibutyl phthalate, in presence of sodium lauryl sulfate was investigated. The asymmetric membrane was fabricated in the shape of capsule body and cap by phase inversion technique. The type of pore forming agent incorporated had a marked influence on the porosity of the asymmetric membrane. However flurbiprofen due to its poor solubility was unable to create enough osmotic pressure and hence less than 10% of drug was released from all the systems with out SLS. However when the study was conducted with SLS, a maximum release of 72% was observed from the capsule with 70% glycerol. The release rates were found to increase with the increase in the concentration of pore forming agent and the amount of SLS encapsulated.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although both embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) are known to have immunosuppressive effects, the mechanisms of immunosuppression are still controversial. Both types of stem cells suppressed not only the proliferation but also survival of CD4(+) T cells in vitro. They suppressed secretion of various cytokines (IL-2, IL-12, IFN-γ, TNF-α, IL-4, IL-5, IL-1β, and IL-10), whereas there was no change in the levels of TGF-β or IDO. Classic and modified transwell experiments demonstrated that immunosuppressive activities were mainly mediated by cell-to-cell contact. Granzyme B in the ESCs played a significant role in their immunosuppression, whereas PDL-1, Fas ligand, CD30 or perforin was not involved in the contact-dependent immunosuppression. However, none of the above molecules played a significant role in the immunosuppression by the MSCs. Interestingly, both stem cells increased the proportion of Foxp3(+) regulatory T cells. Our results showed that both ESCs and MSCs suppressed the survival as well as the proliferation of T cells by mainly contact-dependent mechanisms and increased the proportion of regulatory T cells. Granzyme B was involved in immunosuppression by the ESCs in a perforin-independent manner.
    Transplant Immunology 05/2011; 25(1):7-15. · 1.52 Impact Factor