Mapping the Matrix: The Ways of Neocortex

Institute of Neuroinformatics, UZH/ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Neuron (Impact Factor: 15.98). 11/2007; 56(2):226-38. DOI: 10.1016/j.neuron.2007.10.017
Source: PubMed

ABSTRACT While we know that the neocortex occupies 85% of our brains and that its circuits allow an enormous flexibility and repertoire of behavior (not to mention unexplained phenomena like consciousness), a century after Cajal we have very little knowledge of the details of the cortical circuits or their mode of function. One simplifying hypothesis that has existed since Cajal is that the neocortex consists of repeated copies of the same fundamental circuit. However, finding that fundamental circuit has proved elusive, although partial drafts of a "canonical circuit" appear in many different guises of structure and function. Here, we review some critical stages in the history of this quest. In doing so, we consider the style of cortical computation in relation to the neuronal machinery that supports it. We conclude that the structure and function of cortex honors two major computational principles: "just-enough" and "just-in-time."

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Layer 4 (L4) of primary auditory cortex (A1) receives a tonotopically organized projection from the medial geniculate nucleus of the thalamus. However, individual neurons in A1 respond to a wider range of sound frequencies than would be predicted by their thalamic input, which suggests the existence of cross-frequency intracortical networks. We used laser scanning photostimulation and uncaging of glutamate in brain slices of mouse A1 to characterize the spatial organization of intracortical inputs to L4 neurons. Slices were prepared to include the entire tonotopic extent of A1. We find that L4 neurons receive local vertically organized (columnar) excitation from layers 2 through 6 (L6) and horizontally organized excitation primarily from L4 and L6 neurons in regions centered ~300-500 μm caudal and/or rostral to the cell. Excitatory horizontal synaptic connections from layers 2 and 3 were sparse. The origins of horizontal projections from L4 and L6 correspond to regions in the tonotopic map that are approximately an octave away from the target cell location. Such spatially organized lateral connections may contribute to the detection and processing of auditory objects with specific spectral structures.
    Frontiers in Neural Circuits 04/2015; 9. DOI:10.3389/fncir.2015.00017 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A broad neuron-centric conception of contextual modulation is reviewed and re-assessed in the light of recent neurobiological studies of amplification, suppression, and synchronization. Behavioural and computational studies of perceptual and higher cognitive functions that depend on these processes are outlined, and evidence that those functions and their neuronal mechanisms are impaired in schizophrenia is summarized. Finally, we compare and assess the long-term biological functions of contextual modulation at the level of computational theory as formalized by the theories of coherent infomax and free energy reduction. We conclude that those theories, together with the many empirical findings reviewed, show how contextual modulation at the neuronal level enables the cortex to flexibly adapt the use of its knowledge to current circumstances by amplifying and grouping relevant activities and by suppressing irrelevant activities. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 02/2015; 52. DOI:10.1016/j.neubiorev.2015.02.010 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators.
    Frontiers in Computational Neuroscience 01/2014; 8:175. DOI:10.3389/fncom.2014.00175 · 2.23 Impact Factor