Article

Origin and evolution of vertebrate ABCA genes: a story from amphioxus.

Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
Gene (Impact Factor: 2.2). 01/2008; 405(1-2):88-95. DOI: 10.1016/j.gene.2007.09.018
Source: PubMed

ABSTRACT Previous studies showed that the vertebrate ABCA subfamily, one subgroup of the ATP-binding-cassette superfamily, has evolved rapidly in terms of gene duplication and loss. To further uncover the evolutionary history of the ABCA subfamily, we characterized ABCA members of two amphioxus species (Branchiostoma floridae and B. belcheri), the closest living invertebrate relative to vertebrates. Phylogenetic analysis indicated that these two species have the same set of ABCA genes (both containing six members). Five of these genes have clear orthologs in vertebrate, including one cephalochordate-specific duplication and one vertebrate-specific duplication. In addition, it is found that human orthologs of amphioxus ABCA1/4/7 and its neighboring genes mainly localize on chromosome 1, 9, 19 and 5. Considering that most of analyzed amphioxus genes have clear orthologs in zebrafish, we conclude these four human paralogous regions might derive from a common ancestral region by genome duplication occurred prior to teleost/tetrapod split. Therefore, the present results provide new evidence for 2R hypothesis.

0 Bookmarks
 · 
52 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gE protein of duck plague virus is the important membrane glycoprotein, its protein characterization has not been reported. In this study, we expressed and presented the characterization of the DPV gE product. According to the sequence of the gE gene, a pair of primers were designed, and the DNA product with 1490bp in size was amplified by using the polymerase chain reaction (PCR). The PCR product was cloned into pMD18-T vector, and subcloned into pET32a(+), generating the recombinant plasmid pET32a/DPV-gE. SDS-PAGE analysis showed that the fusion pET32a/DPV-gE protein was highly expressed after induction by 0.2 mM IPTG at 30 degrees C for 4.5 h in Rosseta host cells. Over expressed 6xHis-gE fusion protein was purified by nickel affinity chromatography, and used to immunize the rabbits for the preparation of polyclonal antibody. The result of the intracellular localization revealed that the gE protein was appeared to be in the cytoplasm region. The real time PCR, RT-PCR analysis and Western blotting revealed that the gE gene was produced most abundantly during the late phase of replication in DPV-infected cells. In this work, the DPV gE protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gE product for the first time. These properties of the gE protein provided a prerequisite for further functional analysis of this gene.
    Virology Journal 01/2010; 7:120. · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Unique Long 26 (UL26) and UL26.5 proteins of herpes simplex virus are known to function during the assembly of the viruses. However, for duck enteritis virus (DEV), which is an unassigned member of the family Herpesviridae, little information is available about the function of the two proteins. In this study, the C-terminus of DEV UL26 protein (designated UL26c), which contains the whole of UL26.5, was expressed, and the recombinant UL26c protein was used to immunize BALB/c mice to generate monoclonal antibodies (mAb). The mAb 1C8 was generated against DEV UL26 and UL26.5 proteins and used subsequently to map the epitope in this region. Both the mAb and its defined epitope will provide potential tools for further study of DEV. A mAb (designated 1C8) was generated against the DEV UL26c protein, and a series of 17 partially overlapping fragments that spanned the DEV UL26c were expressed with GST tags. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using mAb 1C8 to identify the epitope. A linear motif, ⁵²⁰IYYPGE⁵²⁵, which was located at the C-terminus of the DEV UL26 and UL26.5 proteins, was identified by mAb 1C8. The result of the ELISA showed that this epitope could be recognized by DEV-positive serum from mice. The ⁵²⁰IYYPGE⁵²⁵ motif was the minimal requirement for reactivity, as demonstrated by analysis of the reactivity of 1C8 with several truncated peptides derived from the motif. Alignment and comparison of the 1C8-defined epitope sequence with those of other alphaherpesviruses indicated that the motif ⁵²¹YYPGE⁵²⁵ in the epitope sequence was conserved among the alphaherpesviruses. A mAb, 1C8, was generated against DEV UL26c and the epitope-defined minimal sequence obtained using mAb 1C8 was ⁵²⁰IYYPGE⁵²⁵. The mAb and the identified epitope may be useful for further study of the design of diagnostic reagents for DEV.
    Virology Journal 01/2010; 7:223. · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and most similar to the genus Mardivirus. The UL15 and/or UL15.5 accumulate(s) in the cytoplasm during early times post-infection and then are translocated to the nucleus at late times.
    Virology Journal 04/2011; 8:156. · 2.09 Impact Factor