Article

Origin and evolution of vertebrate ABCA genes: a story from amphioxus.

Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
Gene (Impact Factor: 2.08). 01/2008; 405(1-2):88-95. DOI: 10.1016/j.gene.2007.09.018
Source: PubMed

ABSTRACT Previous studies showed that the vertebrate ABCA subfamily, one subgroup of the ATP-binding-cassette superfamily, has evolved rapidly in terms of gene duplication and loss. To further uncover the evolutionary history of the ABCA subfamily, we characterized ABCA members of two amphioxus species (Branchiostoma floridae and B. belcheri), the closest living invertebrate relative to vertebrates. Phylogenetic analysis indicated that these two species have the same set of ABCA genes (both containing six members). Five of these genes have clear orthologs in vertebrate, including one cephalochordate-specific duplication and one vertebrate-specific duplication. In addition, it is found that human orthologs of amphioxus ABCA1/4/7 and its neighboring genes mainly localize on chromosome 1, 9, 19 and 5. Considering that most of analyzed amphioxus genes have clear orthologs in zebrafish, we conclude these four human paralogous regions might derive from a common ancestral region by genome duplication occurred prior to teleost/tetrapod split. Therefore, the present results provide new evidence for 2R hypothesis.

0 Bookmarks
 · 
63 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
    Essays in Biochemistry 09/2011; 50(1):19-42. DOI:10.1042/bse0500019 · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid and lipoprotein metabolism in zebrafish and in humans are remarkably similar. Zebrafish express all major nuclear receptors, lipid transporters, apolipoproteins and enzymes involved in lipoprotein metabolism. Unlike mice, zebrafish express cetp and the Cetp activity is detected in zebrafish plasma. Feeding zebrafish a high cholesterol diet, without any genetic intervention, results in significant hypercholesterolemia and robust lipoprotein oxidation, making zebrafish an attractive animal model to study mechanisms relevant to early development of human atherosclerosis. These studies are facilitated by the optical transparency of zebrafish larvae and the availability of transgenic zebrafish expressing fluorescent proteins in endothelial cells and macrophages. Thus, vascular processes can be monitored in live animals. In this review article, we discuss recent advances in using dyslipidemic zebrafish in atherosclerosis-related studies. We also summarize recent work connecting lipid metabolism with regulation of angiogenesis, the work that considerably benefited from using the zebrafish model. These studies uncovered the role of aibp, abca1, abcg1, mtp, apoB, and apoC2 in regulation of angiogenesis in zebrafish and paved the way for future studies in mammals, which may suggest new therapeutic approaches to modulation of excessive or diminished angiogenesis contributing to the pathogenesis of human disease.
    10/2013; DOI:10.1016/j.trsl.2013.09.004