Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture.

Department of Ophthalmology, The University of Iowa College of Medicine, Carver Family Center for Macular Degeneration, Iowa City, IA 52242, USA.
American Journal of Ophthalmology (Impact Factor: 4.02). 01/2008; 144(6):791-811. DOI: 10.1016/j.ajo.2007.08.022
Source: PubMed

ABSTRACT To critically evaluate our experience in molecular testing of Leber congenital amaurosis (LCA) and to use this information to devise a general approach to heterogeneous recessive disorders. Careful clinical and molecular characterization of large cohorts of patients affected with inherited eye diseases will be an essential step in the development of effective therapy for these diseases, especially when the therapy involves gene replacement.
A molecular genetic case-control study.
Six hundred forty-two unrelated individuals with the clinical diagnosis of LCA and 200 unrelated control individuals were screened for disease-causing sequence variations in eight genes using various combinations of single-strand conformational polymorphism analysis (SSCP), automated DNA sequencing, multiplex allele-specific ligation analysis (SNPlex), and high-density solid-phase single nucleotide polymorphism genotyping.
Four hundred forty instances of 189 different disease-causing sequence variations were observed in this study, 98 of which have not been previously reported. One hundred forty-six of the 189 variations (77%) were observed in only a single individual. The observed variations were not evenly distributed among the LCA patients or among the eight genes. Empirical analysis of this uneven distribution was used to devise a multi-platform mutation detection strategy that is four times more efficient than a more conventional strategy of completely sequencing all of the coding regions of all LCA genes in all subjects. Hardy-Weinberg analysis of the observed mutations suggests that these eight genes are collectively responsible for about 70% of the cases of LCA in North America. The carrier frequency of the most common LCA allele (an intron 26 variation in CEP290) was found to be 2/3,248, which suggests that the overall prevalence of LCA in this population is about 1/81,000. An allele-specific ligation assay (SNPlex) was designed to detect 68 of the most common LCA-causing alleles, and semi-quantitative analysis of the data from this assay also revealed examples of gene deletion and isodisomy in the cohort.
The data demonstrates that a tiered screening strategy combining allele-specific detection with automated DNA sequencing can increase the efficiency of autosomal recessive mutation detection four-fold when compared with DNA sequencing alone. However, the very high rate of unique mutations observed in this study (77%) suggests that DNA sequencing will remain an important part of the overall strategy if high sensitivity is to be achieved.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inherited retinal diseases are uncommon pathologies and one of the most harmful causes of childhood and adult blindness. Leber congenital amaurosis (LCA) is the most severe kind of these diseases accounting for approximately 5% of the whole retinal dystrophies and 20% of the children that study on blind schools. Clinical ophthalmologic findings including severe vision loss, nystagmus and ERG abnormalities should be suspected through the first year of life in this group of patients. Phenotypic variability is found when LCA patients have a full ophthalmologic examination. However, a correct diagnosis may be carried out; the determination of ophthalmologic clues as light sensibility, night blindness, fundus pigmentation, among other, join with electroretinographics findings, optical coherence tomography, and new technologies as molecular gene testing may help to reach to a precise diagnosis. Several retinal clinical features in LCA may suggest a genetic or gene particular defect; thus genetic-molecular tools could directly corroborate the clinical diagnosis. Currently, approximately 20 genes have been associated to LCA. In this review, historical perspective, clinical ophthalmological findings, new molecular-genetics technologies, possible phenotype-genotypes correlations, and gene therapy for some LCA genes are described.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials.
    02/2015; 26(1). DOI:10.1089/humc.2014.155
  • [Show abstract] [Hide abstract]
    ABSTRACT: One-fifth of all cases of Leber Congenital Amaurosis (LCA) are Type 1, a severe form of retinal dystrophy caused by loss-of-function mutations in guanylate cyclase1 (GC1), a key member of the phototransduction cascade involved in modulating the photocurrents. Although GC1 has been studied for some time, the mechanisms responsible for its regulation and membrane targeting are not fully understood. We reported earlier that retinal degeneration 3 (RD3) protein interacts with GC1 and promotes its targeting to the photoreceptor outer segments (POS). Here we extend our studies to show direct association between RD3 and guanylate cyclase activating protein1 (GCAP1) and that this functional interaction is important for GC1 targeting to POS. We also show that most LCA1-causing mutations in GC1 result in loss of its interaction with RD3 or being targeted to the plasma membrane. Our data suggest that GC1, GCAP1, and RD3 form a complex in the endoplasmic reticulum that target GC1 to POS. Interruption of this assembly is likely the underlying mechanism for a subset of LCA1. This study offers insights for the development of therapeutic strategies to treat this severe form of blindness. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 12/2014; DOI:10.1074/jbc.M114.616656 · 4.60 Impact Factor