Article

Complete composition tunability of InGaN nanowires using a combinatorial approach.

Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Nature Material (Impact Factor: 36.43). 01/2008; 6(12):951-6. DOI: 10.1038/nmat2037
Source: PubMed

ABSTRACT The III nitrides have been intensely studied in recent years because of their huge potential for everything from high-efficiency solid-state lighting and photovoltaics to high-power and temperature electronics. In particular, the InGaN ternary alloy is of interest for solid-state lighting and photovoltaics because of the ability to tune the direct bandgap of this material from the near-ultraviolet to the near-infrared region. In an effort to synthesize InGaN nitride, researchers have tried many growth techniques. Nonetheless, there remains considerable difficulty in making high-quality InGaN films and/or freestanding nanowires with tunability across the entire range of compositions. Here we report for the first time the growth of single-crystalline In(x)Ga(1-x)N nanowires across the entire compositional range from x=0 to 1; the nanowires were synthesized by low-temperature halide chemical vapour deposition and were shown to have tunable emission from the near-ultraviolet to the near-infrared region. We propose that the exceptional composition tunability is due to the low process temperature and the ability of the nanowire morphology to accommodate strain-relaxed growth, which suppresses the tendency toward phase separation that plagues the thin-film community.

2 Followers
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, well-ordered nanorods were fabricated on the surface of TiO2 thin films deposited on Ti sheets by an ion irradiation method using nitrogen ion irradiation with the energy of 65 keV to a fluence of 1 × 1017 ions/cm2. These TiO2 nanorods are about 120 nm in length and 20–40 nm in diameter. After post-irradiation annealing at 500 °C in O2, the nanorod array photoelectrode displays largely enhanced performance for photoelectrochemical (PEC) water splitting compared to that of the un-irradiated TiO2 thin films with a planar structure. The influences of the irradiated ion energy on the morphology and photocurrent density of the nanorods were investigated. The 65 keV N+ irradiated TiO2 thin films shows a higher photocurrent density than those of the 45 and 85 keV N+ irradiated TiO2 thin films. We also discussed the influence of annealing conditions on the PEC performance of TiO2 nanorods, and it was found that the nanorods annealed at 600 °C in vacuum produce a much higher photocurrent density of 0.6 mA/cm2 at 0.8 V (vs. a saturated calomel electrode), which is about 7 times higher than that of the nanorods annealed in oxygen. This work proposes that ion irradiation combination with thermal annealing in vacuum could be an effective approach for developing nanostructured materials for water splitting.
    International Journal of Hydrogen Energy 04/2015; DOI:10.1016/j.ijhydene.2015.02.087 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 lm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.
    Applied Physics Letters 02/2015; 106(7):072102. DOI:10.1063/1.4909515 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary Znx Cd1−x S semiconductor nanorods by superionic conductor (Ag2S)-mediated growth with [(C4H9)2NCS2]2M (M = Zn, Cd) as single-source precursors. The compositions of the Znx Cd1−x S nanorods are conveniently tuned over a wide range by adjusting the molar ratio of the corresponding precursors, leading to tunable bandgaps and hence the progressive evolution of the light absorption and photoluminescence spectra. The nanorods present well-distributed size and length, which are controlled by the uniform Ag2S nanoparticles and the fixed amount of the precursors. The results suggest the great potential of superionic conductor-mediated growth in composition regulation and bandgap engineering of chalcogenide nanowires/nanorods.
    Nano Research 02/2015; 8(2):584-591. DOI:10.1007/s12274-015-0708-z · 6.96 Impact Factor

Preview

Download
4 Downloads
Available from