Article

The neuropathic pain triad: neurons, immune cells and glia.

Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
Nature Neuroscience (Impact Factor: 14.98). 12/2007; 10(11):1361-8. DOI: 10.1038/nn1992
Source: PubMed

ABSTRACT Nociceptive pain results from the detection of intense or noxious stimuli by specialized high-threshold sensory neurons (nociceptors), a transfer of action potentials to the spinal cord, and onward transmission of the warning signal to the brain. In contrast, clinical pain such as pain after nerve injury (neuropathic pain) is characterized by pain in the absence of a stimulus and reduced nociceptive thresholds so that normally innocuous stimuli produce pain. The development of neuropathic pain involves not only neuronal pathways, but also Schwann cells, satellite cells in the dorsal root ganglia, components of the peripheral immune system, spinal microglia and astrocytes. As we increasingly appreciate that neuropathic pain has many features of a neuroimmune disorder, immunosuppression and blockade of the reciprocal signaling pathways between neuronal and non-neuronal cells offer new opportunities for disease modification and more successful management of pain.

0 Followers
 · 
153 Views
  • Source
    The Open Pain Journal 03/2015; 8(1):1-9. DOI:10.2174/1876386301508010001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In spite of the potency and efficacy of morphine, its clinical application for chronic persistent pain is limited by the development of tolerance to the antinociceptive effect. The cellular and molecular mechanisms underlying morphine tolerance are complex and still unclear. Recently, the activation of glial cells and the release of glia-derived proinflammatory mediators have been suggested to play a role in the phenomenon. N-Palmitoylethanolamine (PEA) is an endogenous compound with antinociceptive effects able to reduce the glial activation. On this basis, 30 mg kg(-1) PEA was subcutaneously daily administered in morphine treated rats (10 mg kg(-1) intraperitoneally, daily). PEA treatment significantly attenuated the development of tolerance doubling the number of days of morphine antinociceptive efficacy in comparison to the vehicle + morphine group. PEA prevented both microglia and astrocyte cell number increase induced by morphine in the dorsal horn; on the contrary, the morphine-dependent increase of spinal TNF-α levels was not modified by PEA. Nevertheless, the immunohistochemical analysis revealed significantly higher TNF-α immunoreactivity in astrocytes of PEA-protected rats suggesting a PEA-mediated decrease of cytokine release from astrocyte. PEA intervenes in the nervous alterations that lead to the lack of morphine antinociceptive effects; a possible application of this endogenous compound in opioid-based therapies is suggested.
    01/2015; 2015:894732. DOI:10.1155/2015/894732
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Recent evidence suggests that persistent pain and recurrent pain are due to the pain memory which is related to the phosphorylation of cAMP response element-binding protein (p-CREB) in anterior cingulate cortex (ACC). Eletroacupuncture (EA), as a complementary Chinese medical procedure, has a significant impact on the treatment of pain and is now considered as a mind-body therapy. Methods The rat model of pain memory was induced by two injections of carrageenan into the paws, which was administered separately by a 14-day interval, and treated with EA therapy. The paw withdrawal thresholds (PWTs) of animals were measured and p-CREB expressions in ACC were detected by using immunofluorescence (IF) and electrophoretic mobility shift assay (EMSA). Statistical comparisons among different groups were made by one-way, repeated-measures analysis of variance (ANOVA). Results The second injection of carrageenan caused the decrease of PWTs in the non-injected hind paw. EA stimulation applied prior to the second injection, increased the values of PWTs. In ACC, the numbers of p-CREB positive cells were significantly increased in pain memory model rats, which were significantly reduced by EA. EMSA results showed EA also down-regulated the combining capacity of p-CREB with its DNA. Furthermore, the co-expression of p-CREB with GFAP, OX-42, or NeuN in ACC was strengthened in the pain memory model rats. EA inhibited the co-expression of p-CREB with GFAP or OX-42, but not NeuN in ACC. Conclusions The present results suggest the retrieval of pain memory could be alleviated by the pre-treatment of EA, which is at least partially attributed to the down-regulated expression and combining capacity of p-CREB and the decreased expression of p-CREB in astrocytes and microglia cells.
    Behavioral and Brain Functions 03/2015; 11. DOI:10.1186/s12993-015-0055-y · 2.00 Impact Factor

Full-text (2 Sources)

Download
132 Downloads
Available from
May 29, 2014