The neuropathic pain triad: neurons, immune cells and glia.

Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
Nature Neuroscience (Impact Factor: 14.98). 12/2007; 10(11):1361-8. DOI: 10.1038/nn1992
Source: PubMed

ABSTRACT Nociceptive pain results from the detection of intense or noxious stimuli by specialized high-threshold sensory neurons (nociceptors), a transfer of action potentials to the spinal cord, and onward transmission of the warning signal to the brain. In contrast, clinical pain such as pain after nerve injury (neuropathic pain) is characterized by pain in the absence of a stimulus and reduced nociceptive thresholds so that normally innocuous stimuli produce pain. The development of neuropathic pain involves not only neuronal pathways, but also Schwann cells, satellite cells in the dorsal root ganglia, components of the peripheral immune system, spinal microglia and astrocytes. As we increasingly appreciate that neuropathic pain has many features of a neuroimmune disorder, immunosuppression and blockade of the reciprocal signaling pathways between neuronal and non-neuronal cells offer new opportunities for disease modification and more successful management of pain.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent peripheral inflammation alters trafficking of AMPA receptors (AMPARs) at the synapses between primary afferents and dorsal horn (DH) neurons that contributes to the maintenance of inflammatory pain. However, whether peripheral inflammation changes the synaptic activity within the DH circuitry and how it modulates synaptic AMPARs in different neuronal types still remain unknown. Here we find that Complete Freund's Adjuvant (CFA)-induced peripheral inflammation prominently augments excitatory neurotransmission in the rat lamina II neurons characterized by intrinsic adapting firing properties and apparently decreases it in the tonic firing lamina II neurons, suggesting different roles of these types of interneurons in pain processing. Peripheral inflammation also differentially changes inhibitory neurotransmission in these neuronal types, shifting the balance between neuronal excitation and inhibition towards excitation of the adapting firing, but towards inhibition of the tonic firing lamina II neurons. Synaptic AMPARs were differentially changed in the adapting firing and the tonic firing neurons, implying different mechanisms of AMPAR adjustment at the synapses in these types of interneurons during persistent inflammation. The inflammatory-induced, neuron-type specific changes in synaptic drive within the DH circuitry and synaptic AMPAR functioning in lamina II neurons may contribute to the persistent pain maintenance.
    Pain 01/2015; DOI:10.1097/01.j.pain.0000460318.65734.00 · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
    Frontiers in Psychiatry 02/2015; 6. DOI:10.3389/fpsyt.2015.00015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid anti-hyperalgesic actions of PPARγ activation we administered pioglitazone to rats with spared nerve injury (SNI) and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 min of injection, consistent with a non-genomic mechanism. Systemic or intrathecal administration of GW9662, a PPARγ antagonist, inhibited the anti-hyperalgesic actions of intraperitoneal or intrathecal pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of non-genomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When co-administered intrathecally, anisomycin did not change pioglitazone anti-hyperalgesia at an early 7.5 min timepoint, further supporting a rapid non-genomic mechanism. At later timepoints anisomycin reduced pioglitazone anti-hyperalgesia, suggesting a delayed recruitment of genomic mechanisms. Pioglitazone reduction of SNI-induced increases in GFAP expression occurred more rapidly than expected, within 60 min. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent from canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation, and via both genomic and non-genomic PPARγ mechanisms.
    Pain 01/2015; DOI:10.1097/ · 5.64 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014