Article

Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

Medical Microbiology and Immunology, Rowe Program in Human Genetics, School of Medicine, University of California, Davis, California 95616 , USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 01/2006; 1(4):e1-11. DOI: 10.4161/epi.1.4.3514
Source: PubMed

ABSTRACT Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

2 Followers
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders.
    Experimental Neurology 01/2015; DOI:10.1016/j.expneurol.2015.01.006 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frontal cortical dysfunction is thought to contribute to cognitive and behavioral features of autism spectrum disorders; however, underlying mechanisms are poorly understood. The present study sought to define how loss of Mecp2, the gene mutated in Rett syndrome (RTT), disrupts function in the murine medial prefrontal cortex (mPFC) using acute brain slices and behavioral testing. Compared with wildtype, pyramidal neurons in the Mecp2 null mPFC exhibit significant reductions in excitatory postsynaptic currents, the duration of excitatory UP-states, evoked population activity, and the ratio of NMDA:AMPA currents, as well as an increase in the relative fraction of NR2B currents. These functional changes are associated with reductions in the density of excitatory dendritic spines, the ratio of vesicular glutamate to GABA transporters and GluN1 expression. In contrast to recent reports on circuit defects in other brain regions, we observed no effect of Mecp2 loss on inhibitory synaptic currents or expression of the inhibitory marker parvalbumin. Consistent with mPFC hypofunction, Mecp2 nulls exhibit respiratory dysregulation in response to behavioral arousal. Our data highlight functional hypoconnectivity in the mPFC as a potential substrate for behavioral disruption in RTT and other disorders associated with reduced expression of Mecp2 in frontal cortical regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 02/2015; DOI:10.1093/cercor/bhv002 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise regulation of the epigenome during perinatal development is critical to the formation of species-typical behavior later in life. Recent data suggests that Gadd45b facilitates active DNA demethylation by recruiting proteins involved in base excision repair (BER), which will catalyze substitution of 5-methyl-cytosine (5mC) for an unmodified cytosine. While a role for Gadd45b has been implicated in both hippocampal and amygdalar learning tasks, to the best of our knowledge, no study has been done investigating the involvement of Gadd45b in neurodevelopmental programming of social behavior. To address this, we used a targeted siRNA delivery approach to transiently knock down Gadd45b expression in the neonatal rat amygdala. We chose to examine social behavior in the juvenile period, as social deficits associated with neurodevelopmental disorders tend to emerge in humans at an equivalent age. We find that neonatal Gadd45b knock-down results in altered juvenile social behavior and reduced expression of several genes implicated in psychiatric disorders, including methyl-CpG-binding protein 2 (MeCP2), Reelin, and brain derived neurotrophic factor (BDNF). We furthermore report a novel role for Gadd45b in the programmed expression of α2-adrenoceptor (Adra2a). Consistent with Gadd45b's role in the periphery, we also observed changes in the expression of pro-inflammatory cytokines interleukin-6 (Il-6) and interleukin-1beta (Il-1beta) in the amygdala, which could potentially mediate or exacerbate effects of Gadd45b knockdown on the organization of social behavior. These data suggest a prominent role for Gadd45b in the epigenetic programming of complex juvenile social interactions, and may provide insight into the etiology of juvenile behavioral disorders such as ADHD, autism, and/or schizophrenia. Copyright © 2015. Published by Elsevier Inc.
    Brain Behavior and Immunity 02/2015; DOI:10.1016/j.bbi.2015.02.018 · 6.13 Impact Factor

Full-text

Download
59 Downloads
Available from
Jun 1, 2014