Article

Differential impact of mammalian target of rapamycin inhibition on CD4(+)CD25(+)Foxp3(+) regulatory T cells compared with conventional CD4(+) T cells

Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Blood (Impact Factor: 9.78). 02/2008; 111(1):453-62. DOI: 10.1182/blood-2007-06-094482
Source: PubMed

ABSTRACT Based on their ability to control T-cell homeostasis, Foxp3(+)CD4(+)CD25(+) regulatory T cells (Tregs) are being considered for treatment of autoimmune disorders and acute graft-versus-host disease (aGVHD). When combining Tregs with the immunosuppressant rapamycin (RAPA), we observed reduced alloreactive conventional T-cell (Tconv) expansion and aGVHD lethality compared with each treatment alone. This synergistic in vivo protection was paralleled by intact expansion of polyclonal Tregs with conserved high FoxP3 expression. In contrast to Tconv, activation of Tregs with alloantigen and interleukin-2 preferentially led to signal transducer and activator of transcription 5 (STAT5) phosphorylation and not phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activity. Expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative regulator of the PI3K/Akt/mTOR pathway, remained high in Tregs but not Tconv during stimulation. Conversely, targeted deletion of PTEN increased susceptibility of Tregs to mTOR inhibition by RAPA. Differential impact of RAPA as a result of reduced usage of the mTOR pathway in Tregs compared with conventional T cells explains the synergistic effect of RAPA and Tregs in aGVHD protection, which has important implications for clinical trials using Tregs.

0 Followers
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3(+) Tregs are central regulators of immune tolerance. As dysregulated Treg responses contribute to disease pathogenesis, novel approaches to target the immunomodulatory functions of Tregs are currently under investigation. mTORC1 and mTORC2 are therapeutic targets of interest. Recent studies revealed that mTOR signaling impacts conventional T-cell homeostasis, activation and differentiation. Moreover, mTOR controls the differentiation and functions of Tregs, suggesting that its activity could be targeted to modulate Treg responses. Here, we summarize how Tregs suppress immune responses, their roles in disease development and methods used to alter their functions therapeutically. We also discuss the diverse effects exerted by mTOR inhibition on the development, homeostasis, and functions of conventional T cells and Tregs. We conclude with a discussion of how modulation of mTOR activity in Tregs may be therapeutically beneficial or detrimental in different disease settings.
    Immunotherapy 12/2014; 6(12):1295-311. DOI:10.2217/imt.14.84 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Th17 cells contribute to severe GVHD in murine bone marrow transplantation. Targeted deletion of the RORγt transcription factor or blockade of the JAK2-STAT3 axis suppresses IL-17 production and alloreactivity by Th17 cells. Here, we show that pSTAT3 Y705 is increased significantly in CD4(+) T cells among human recipients of allogeneic HCT before the onset of Grade II-IV acute GVHD. Examination of target-organ tissues at the time of GVHD diagnosis indicates that the amount of RORγt + Th17 cells is significantly higher in severe GVHD. Greater accumulation of tissue-resident Th17 cells also correlates with the use of MTX- compared with Rapa-based GVHD prophylaxis, as well as a poor therapeutic response to glucocorticoids. RORγt is optimally suppressed by concurrent neutralization of TORC1 with Rapa and inhibition of STAT3 activation with S3I-201, supporting that mTOR- and STAT3-dependent pathways converge upon RORγt gene expression. Rapa-resistant T cell proliferation can be totally inhibited by STAT3 blockade during initial allosensitization. We conclude that STAT3 signaling and resultant Th17 tissue accumulation are closely associated with acute GVHD onset, severity, and treatment outcome. Future studies are needed to validate the association of STAT3 activity in acute GVHD. Novel GVHD prevention strategies that incorporate dual STAT3 and mTOR inhibition merit investigation. © Society for Leukocyte Biology.
    Journal of Leukocyte Biology 02/2015; DOI:10.1189/jlb.5A1114-532RR · 4.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3(+) regulatory T cells (Treg cells) are required for immunological homeostasis. One notable distinction between conventional T cells (Tconv cells) and Treg cells is differences in the activity of phosphatidylinositol-3-OH kinase (PI(3)K); only Tconv cells downregulate PTEN, the main negative regulator of PI(3)K, upon activation. Here we found that control of PI(3)K in Treg cells was essential for lineage homeostasis and stability. Mice lacking Pten in Treg cells developed an autoimmune-lymphoproliferative disease characterized by excessive T helper type 1 (TH1) responses and B cell activation. Diminished control of PI(3)K activity in Treg cells led to reduced expression of the interleukin-2 (IL-2) receptor α subunit CD25, accumulation of Foxp3(+)CD25(-) cells and, ultimately, loss of expression of the transcription factor Foxp3 in these cells. Collectively, our data demonstrate that control of PI(3)K signaling by PTEN in Treg cells is critical for maintaining their homeostasis, function and stability.
    Nature Immunology 01/2015; DOI:10.1038/ni.3077 · 24.97 Impact Factor