Article

Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues.

Department of Anatomy and Neurobiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan.
European Journal of Neuroscience (Impact Factor: 3.75). 12/2007; 26(10):2731-8. DOI:10.1111/j.1460-9568.2007.05926.x
Source: PubMed

ABSTRACT The mammalian hypothalamic suprachiasmatic nucleus (SCN) is the master oscillator that regulates the circadian rhythms of the peripheral oscillators. Previous studies have demonstrated that the transplantation of embryonic SCN tissues into SCN-lesioned arrhythmic mice restores the behavioral circadian rhythms of these animals. In our present study, we examined the clock gene expression profiles in a transplanted SCN and peripheral tissues, and also analysed the circadian rhythm of the locomotor activity in SCN-grafted mice. These experiments were undertaken to elucidate whether the transplanted SCN generates a dynamic circadian oscillation and maintains the phase relationships that can be detected in intact mice. The grafted SCN indeed showed dynamic circadian expression rhythms of clock genes such as mPeriod1 (mPer1) and mPeriod2 (mPer2). Furthermore, the phase differences between the expression rhythms of these genes in the grafted SCN and the locomotor activity rhythms of the transplanted animals were found to be very similar to those in intact animals. Moreover, in the liver, kidney and skeletal muscles of the transplanted animals, the phase angles between the circadian rhythm of the grafted SCN and that of the peripheral tissues were maintained as in intact animals. However, in the SCN-grafted animals, the amplitudes of the mPer1 and mPer2 rhythms were attenuated in the peripheral tissues. Our current findings therefore indicate that a transplanted SCN has the capacity to generate a dynamic intrinsic circadian oscillation, and can also lock the normal phase angles among the SCN, locomotor activity and peripheral oscillators in a similar manner as in intact control animals.

0 0
 · 
0 Bookmarks
 · 
68 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Diurnal variation of sports performance usually peaks in the late afternoon, coinciding with increased body temperature. This circadian pattern of performance may be explained by the effect of increased core temperature on peripheral mechanisms, as neural drive does not appear to exhibit nycthemeral variation. This typical diurnal regularity has been reported in a variety of physical activities spanning the energy systems, from Adenosine triphosphate-phosphocreatine (ATP-PC) to anaerobic and aerobic metabolism, and is evident across all muscle contractions (eccentric, isometric, concentric) in a large number of muscle groups. Increased nerve conduction velocity, joint suppleness, increased muscular blood flow, improvements of glycogenolysis and glycolysis, increased environmental temperature, and preferential meteorological conditions may all contribute to diurnal variation in physical performance. However, the diurnal variation in strength performance can be blunted by a repeated-morning resistance training protocol. Optimal adaptations to resistance training (muscle hypertrophy and strength increases) also seem to occur in the late afternoon, which is interesting, since cortisol and, particularly, testosterone (T) concentrations are higher in the morning. T has repeatedly been linked with resistance training adaptation, and higher concentrations appear preferential. This has been determined by suppression of endogenous production and exogenous supplementation. However, the cortisol (C)/T ratio may indicate the catabolic/anabolic environment of an organism due to their roles in protein degradation and protein synthesis, respectively. The morning elevated T level (seen as beneficial to achieve muscle hypertrophy) may be counteracted by the morning elevated C level and, therefore, protein degradation. Although T levels are higher in the morning, an increased resistance exercise-induced T response has been found in the late afternoon, suggesting greater responsiveness of the hypothalamo-pituitary-testicular axis then. Individual responsiveness has also been observed, with some participants experiencing greater hypertrophy and strength increases in response to strength protocols, whereas others respond preferentially to power, hypertrophy, or strength endurance protocols dependent on which protocol elicited the greatest T response. It appears that physical performance is dependent on a number of endogenous time-dependent factors, which may be masked or confounded by exogenous circadian factors. Strength performance without time-of-day-specific training seems to elicit the typical diurnal pattern, as does resistance training adaptations. The implications for this are (a) athletes are advised to coincide training times with performance times, and (b) individuals may experience greater hypertrophy and strength gains when resistance training protocols are designed dependent on individual T response.
    Chronobiology International 06/2010; 27(4):675-705. · 4.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The biological clock, located in the hypothalamic suprachiasmatic nucleus (SCN), controls the daily rhythms in physiology and behavior. Early studies demonstrated that light exposure not only affects the phase of the SCN but also the functional activity of peripheral organs. More recently it was shown that the same light stimulus induces immediate changes in clock gene expression in the pineal and adrenal, suggesting a role of peripheral clocks in the organ-specific output. In the present study, we further investigated the immediate effect of nocturnal light exposure on clock genes and metabolism-related genes in different organs of the rat. In addition, we investigated the role of the autonomic nervous system as a possible output pathway of the SCN to modify the activity of the liver after light exposure. First, we demonstrated that light, applied at different circadian times, affects clock gene expression in a different manner, depending on the time of day and the organ. However, the changes in clock gene expression did not correlate in a consistent manner with those of the output genes (i.e., genes involved in the functional output of an organ). Then, by selectively removing the autonomic innervation to the liver, we demonstrated that light affects liver gene expression not only via the hormonal pathway but also via the autonomic input. Nocturnal light immediately affects peripheral clock gene expression but without a clear correlation with organ-specific output genes, raising the question whether the peripheral clock plays a "decisive" role in the immediate (functional) response of an organ to nocturnal light exposure. Interestingly, the autonomic innervation of the liver is essential to transmit the light information from the SCN, indicating that the autonomic nervous system is an important gateway for the SCN to cause an immediate resetting of peripheral physiology after phase-shift inducing light exposures.
    PLoS ONE 02/2009; 4(5):e5650. · 3.73 Impact Factor
  • Source