A gene regulatory network subcircuit drives a dynamic pattern of gene expression.

Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
Science (Impact Factor: 31.48). 12/2007; 318(5851):794-7. DOI: 10.1126/science.1146524
Source: PubMed

ABSTRACT Early specification of endomesodermal territories in the sea urchin embryo depends on a moving torus of regulatory gene expression. We show how this dynamic patterning function is encoded in a gene regulatory network (GRN) subcircuit that includes the otx, wnt8, and blimp1 genes, the cis-regulatory control systems of which have all been experimentally defined. A cis-regulatory reconstruction experiment revealed that blimp1 autorepression accounts for progressive extinction of expression in the center of the torus, whereas its outward expansion follows reception of the Wnt8 ligand by adjacent cells. GRN circuitry thus controls not only static spatial assignment in development but also dynamic regulatory patterning.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.
    PLoS ONE 12/2014; 9(12):e113866. DOI:10.1371/journal.pone.0113866 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of complex multicellular organisms requires careful regulation at both transcriptional and post-transcriptional levels. Post-transcriptional gene regulation is in part mediated by a class of non-coding RNAs of 21–25 nucleotides in length known as microRNAs (miRNAs). β-catenin, regulated by the canonical Wnt signaling pathway, has a highly evolutionarily conserved function in patterning early metazoan embryos, in forming the Anterior-Posterior axis, and in establishing the endomesoderm. Using reporter constructs and site-directed mutagenesis, we identified at least three miRNA binding sites within the 3′ untranslated region (3′UTR) of the sea urchin β-catenin. Further, blocking these three miRNA binding sites within the β-catenin 3′UTR to prevent regulation of endogenous β-catenin by miRNAs resulted in a minor increase in β-catenin protein accumulation that is sufficient to induce aberrant gut morphology and circumesophageal musculature. These phenotypes are likely the result of increased transcript levels of Wnt responsive endomesodermal regulatory genes. This study demonstrates the importance of miRNA regulation of β-catenin in early development.
    Developmental Biology 01/2015; 402(1). DOI:10.1016/j.ydbio.2015.01.008 · 3.64 Impact Factor
  • Source
    Dataset: srep06485


Available from