Article

Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

Departamento de Clínica Médica, FCM-UNICAMP, Universidade Estadual de Campinas, Campinas, SP, Brasil.
The Journal of Physiology (Impact Factor: 4.54). 02/2008; 586(2):659-71. DOI: 10.1113/jphysiol.2007.142414
Source: PubMed

ABSTRACT Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor beta (IR beta), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (L-N6-(1-iminoethyl)lysine; L-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IR beta, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity.

Download full-text

Full-text

Available from: Eduardo R Ropelle, Jan 07, 2014
0 Followers
 · 
142 Views
  • Source
    • "Skeletal muscle AMPK phosphorylation was reduced in HFD-induced obese Wistar rats and in obese Zucker rats [35], [38]. Acute exercise was reported to increase AMPK phosphorylation in Wistar rats [38], but not in obese Zucker rats [35]. AMPK phosphorylation and protein expression were not adversely affected in the skeletal muscle of ob/ob mice and obese Wistar rats with insulin resistance induced by cafeteria diet [39], [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague-Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr(308)) and (Ser(473)) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats.
    PLoS ONE 12/2012; 7(12):e51709. DOI:10.1371/journal.pone.0051709 · 3.23 Impact Factor
  • Source
    • "In addition, evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance by S-nitrosation [29]. So, Pauli and colleagues investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by physical exercise [30]. The authors observed that physical activity can revert insulin resistance through the reduction of S-nitrosation of the IR and IRS proteins. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The aim of the present study was to evaluate the protective effect of concurrent exercise in the degree of the insulin resistance in mice fed with a high-fat diet, and assess adiponectin receptors (ADIPOR1 and ADIPOR2) and endosomal adaptor protein APPL1 in different tissues. Methods Twenty-four mice were randomized into four groups (n = 6): chow standard diet and sedentary (C); chow standard diet and simultaneous exercise training (C-T); fed on a high-fat diet and sedentary (DIO); and fed on a high-fat diet and simultaneous exercise training (DIO-T). Simultaneously to starting high-fat diet feeding, the mice were submitted to a swimming exercise training protocol (2 x 30 minutes, with 5 minutes of interval/day), five days per week, for twelve weeks (90 days). Animals were then euthanized 48 hours after the last exercise training session, and adipose, liver, and skeletal muscle tissue were extracted for an immunoblotting analysis. Results IR, IRs, and Akt phosphorylation decreased in the DIO group in the three analyzed tissues. In addition, the DIO group exhibited ADIPOR1 (skeletal muscle and adipose tissue), ADIPOR2 (liver), and APPL1 reduced when compared with the C group. However, it was reverted when exercise training was simultaneously performed. In parallel, ADIPOR1 and 2 and APPL1 protein levels significantly increase in exercised mice. Conclusions Our findings demonstrate that exercise training performed concomitantly to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in the hepatic, adipose, and skeletal muscle tissue.
    Lipids in Health and Disease 10/2012; 11(1):134. DOI:10.1186/1476-511X-11-134 · 2.31 Impact Factor
  • Source
    • "In the current study, we also demonstrated that after a single bout of exercise, iNOS expression and IRβ, IRS-1, and Akt S-nitrosation were diminished; conversely, insulin sensitivity was increased in the skeletal muscle of old mice. These data are in accordance with previous results observed in obese exercised rats (14). Therefore, beyond the pharmacological and genetic approach, the physiological reduction of iNOS levels induced by exercise reversed the deregulation of insulin signaling and insulin resistance observed in old mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensitivity in skeletal muscle. Conversely, aged iNOS-null mice were protected from S-nitrosation-induced insulin resistance. Moreover, pharmacological treatment with an iNOS inhibitor and acute exercise reduced iNOS-induced S-nitrosation and increased insulin sensitivity in the muscle of aged animals. These findings indicate that the insulin resistance observed in aged mice is mainly mediated through the S-nitrosation of the insulin-signaling pathway.
    Diabetes 09/2012; 62(2). DOI:10.2337/db12-0339 · 8.47 Impact Factor
Show more