Carotenoid derived aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial cells.

Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Room 2.100, 700 University Boulevard, Galveston, TX 77555-1106, USA.
Experimental Eye Research (Impact Factor: 3.02). 02/2008; 86(1):70-80. DOI: 10.1016/j.exer.2007.09.010
Source: PubMed

ABSTRACT Carotenoids have been advocated as potential therapeutic agents in treating age-related macular degeneration (AMD). In ocular tissues carotenoids may undergo oxidation and form carotenoid-derived aldehydes (CDA), which would be toxic to tissues. We have investigated the cytotoxic effects of CDA from beta-carotene, Lutein and Zeaxanthin on human retinal pigment epithelial cells (ARPE-19). The serum-starved ARPE-19 cells were treated with CDA without or with antioxidant, N-acetylcysteine (NAC) and cell viability, apoptosis, reactive oxygen species (ROS) levels, nuclear chromatin condensation as well as fragmentation, change in mitochondrial membrane potential (MMP) and activation of transcription factors NF-kappaB and AP-1 were determined. We observed a dose and time-dependent decline in cell viability upon incubation of ARPE-19 cells with CDA. The CDA treatment also led to elevation in ROS levels in a dose-dependent manner. Upon CDA treatment a significant number of apoptotic cells were observed. Also early apoptotic changes in ARPE-19 cells induced by CDA were associated with change in MMP. Increased nuclear chromatin condensation and fragmentation were also observed in cells treated with CDA. The cytotoxicity of CDA in ARPE-19 cells was significantly ameliorated by the antioxidant, NAC. Furthermore, CDA induced the activation of NF-kappaB and AP-1 which was significantly inhibited by NAC. Thus our results demonstrate that CDA could increase the oxidative stress in ARPE-19 cells by elevating ROS levels that would cause imbalance in cellular redox status, which could lead to cell death. This would suggest that high carotenoid supplementation for treatment of AMD should be used cautiously.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary adenylate cyclase-activating polypeptide (PACAP), which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.
    Frontiers in Endocrinology 11/2012; 3:145. DOI:10.3389/fendo.2012.00145
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30µM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10µM) but not high (>10µM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.
    Free Radical Biology and Medicine 06/2013; 65. DOI:10.1016/j.freeradbiomed.2013.06.008 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-dose chemotherapy using methotrexate (MTX) frequently induces side effects such as mucositis that leads to intestinal damage and diarrhea. Several natural compounds have been demonstrated of their effectiveness in protecting intestinal epithelial cells from these adverse effects. In this paper, we investigated the protection mechanism of lutein against MTX-induced damage in IEC-6 cells originating from the rat jejunum crypt. The cell viability, induced-apoptosis, reactive oxygen species (ROS) generation, and mitochondrial membrane potential in IEC-6 cells under MTX treatment were examined in the presence or absence of lutein. Expression level of Bcl2, Bad and ROS scavenging enzymes (including SOD, catalase and Prdx1) were detected by quantitative RT-PCR. The cell viability of IEC-6 cells exposed to MTX was decreased in a dose- and time-dependent manner. MTX induces mitochondrial membrane potential loss, ROS generation and caspase 3 activation in IEC-6 cells. The cytotoxicity of MTX was reduced in IEC-6 cells by the 24 h pre-treatment of lutein. We found that pre-treatment of lutein significantly reduces MTX-induced ROS and apoptosis. The expression of SOD was up-regulated by the pre-treatment of lutein in the MTX-treated IEC-6 cells. These results indicated that lutein can protect IEC-6 cells from the chemo-drugs induced damage through increasing ROS scavenging ability. The MTX-induced apoptosis of IEC-6 cells was shown to be repressed by the pre-treatment of lutein, which may represent a promising adjunct to conventional chemotherapy for preventing intestinal damages.
    PLoS ONE 09/2013; 8(9):e72553. DOI:10.1371/journal.pone.0072553 · 3.53 Impact Factor


Available from