Article

Carotenoid derived aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial cells.

Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Room 2.100, 700 University Boulevard, Galveston, TX 77555-1106, USA.
Experimental Eye Research (Impact Factor: 3.02). 02/2008; 86(1):70-80. DOI: 10.1016/j.exer.2007.09.010
Source: PubMed

ABSTRACT Carotenoids have been advocated as potential therapeutic agents in treating age-related macular degeneration (AMD). In ocular tissues carotenoids may undergo oxidation and form carotenoid-derived aldehydes (CDA), which would be toxic to tissues. We have investigated the cytotoxic effects of CDA from beta-carotene, Lutein and Zeaxanthin on human retinal pigment epithelial cells (ARPE-19). The serum-starved ARPE-19 cells were treated with CDA without or with antioxidant, N-acetylcysteine (NAC) and cell viability, apoptosis, reactive oxygen species (ROS) levels, nuclear chromatin condensation as well as fragmentation, change in mitochondrial membrane potential (MMP) and activation of transcription factors NF-kappaB and AP-1 were determined. We observed a dose and time-dependent decline in cell viability upon incubation of ARPE-19 cells with CDA. The CDA treatment also led to elevation in ROS levels in a dose-dependent manner. Upon CDA treatment a significant number of apoptotic cells were observed. Also early apoptotic changes in ARPE-19 cells induced by CDA were associated with change in MMP. Increased nuclear chromatin condensation and fragmentation were also observed in cells treated with CDA. The cytotoxicity of CDA in ARPE-19 cells was significantly ameliorated by the antioxidant, NAC. Furthermore, CDA induced the activation of NF-kappaB and AP-1 which was significantly inhibited by NAC. Thus our results demonstrate that CDA could increase the oxidative stress in ARPE-19 cells by elevating ROS levels that would cause imbalance in cellular redox status, which could lead to cell death. This would suggest that high carotenoid supplementation for treatment of AMD should be used cautiously.

0 Followers
 · 
81 Views
  • Source
    • "Some of those products are involved in plant defense or architecture (Gomez-Roldan et al., 2008; Tsuchiya et al., 2010; Dor et al., 2011). In animals, ROSinduced oxidized carotenoid derivatives have been reported to be biologically active, playing a role in enzyme inhibition, changes in gene expression, transcription activation, or apoptosis (Siems et al., 2000; Sharoni et al., 2004; Kuntz et al., 2006; Lindshield et al., 2007; Kalariya et al., 2008). Although a signaling function of oxidized carotenoids has not been reported Figure 10. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.
    Plant physiology 03/2012; 158(3):1267-78. DOI:10.1104/pp.111.182394 · 7.39 Impact Factor
  • Source
    • "The serum starved RAW cells were washed with PBS and incubated with LPS without or with Benfotamine for 4 h. MMP was determined essentially as described by us earlier [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to investigate the molecular mechanisms by which benfotiamine, a lipid-soluble analogue of vitamin B1, affects lipopolysaccharide (LPS)-induced inflammatory signals leading to cytotoxicity in the mouse macrophage cell line RAW264.7. Benfotiamine prevented LPS-induced apoptosis, expression of the Bcl-2 family of proapoptotic proteins, caspase-3 activation, and PARP cleavage and altered mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor and phosphorylation and subsequent activation of p38-MAPK, stress-activated kinases (SAPK/JNK), protein kinase C, and cytoplasmic phospholipase A2 in RAW cells. Further, phosphorylation and degradation of inhibitory kappaB and consequent activation and nuclear translocation of the redox-sensitive transcription factor NF-kappaB were significantly prevented by benfotiamine. The LPS-induced increased expression of cytokines and chemokines and the inflammatory marker proteins iNOS and COX-2 and their metabolic products NO and PGE(2) was also blocked significantly. Thus, our results elucidate the molecular mechanism of the anti-inflammatory action of benfotiamine in LPS-induced inflammation in murine macrophages. Benfotiamine suppresses oxidative stress-induced NF-kappaB activation and prevents bacterial endotoxin-induced inflammation, indicating that vitamin B1 supplementation could be beneficial in the treatment of inflammatory diseases.
    Free Radical Biology and Medicine 02/2010; 48(10):1423-34. DOI:10.1016/j.freeradbiomed.2010.02.031 · 5.71 Impact Factor
  • Source
    • "They observed lower lutein and zeaxanthin concentrations in the peripheral retina of autopsy eyes from persons with AMD, relative to controls, suggesting that pathology in the central macular did not explain their finding that AMD eyes have significantly less macular pigment than healthy eyes (Bone et al., 2001). It has been suggested that metabolism of lutein and zeaxanthin into various secondary products may account for the changes in MPOD in AMD (Kalariya, et al., 2008). This hypothesis is not widely accepted and requires further investigation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing recognition that the optical and antioxidant properties of the xanthophyll carotenoids lutein and zeaxanthin play an important role in maintaining the health and function of the human macula. In this review article, we assess the value of non-invasive quantification of macular pigment levels and distributions to identify individuals potentially at risk for visual disability or catastrophic vision loss from age-related macular degeneration, and we consider the strengths and weaknesses of the diverse measurement methods currently available.
    Vision research 10/2009; 50(7):716-28. DOI:10.1016/j.visres.2009.10.014 · 2.38 Impact Factor
Show more

Preview

Download
0 Downloads
Available from