Article

Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding

Department of Chemistry, Emory University, Atlanta, Georgia, United States
Journal of the American Chemical Society (Impact Factor: 11.44). 12/2007; 129(47):14759-66. DOI: 10.1021/ja074936k
Source: PubMed

ABSTRACT We report the use of Tat peptide-conjugated quantum dots (Tat-QDs) to examine the complex behavior of nanoparticle probes in live cells, a topic that is of considerable current interest in developing advanced nanoparticle agents for molecular and cellular imaging. Dynamic confocal imaging studies indicate that the peptide-conjugated QDs are internalized by macropinocytosis, a fluid-phase endocytosis process triggered by Tat-QD binding to negatively charged cell membranes. The internalized Tat-QDs are tethered to the inner vesicle surfaces and are trapped in cytoplasmic organelles. The QD loaded vesicles are found to be actively transported by molecular machines (such as dyneins) along microtubule tracks. The destination of this active transport is an asymmetric perinuclear region (outside the cell nucleus) known as the microtubule organizing center (MTOC). We also find that Tat-QDs strongly bind to cellular membrane structures such as filopodia and that large QD-containing vesicles are released from the tips of filopodia by vesicle shedding. These results provide new insights into the mechanisms of Tat peptide-mediated delivery as well as toward the design of functionalized nanoparticles for molecular imaging and targeted therapy.

1 Follower
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this paper, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly. In addition, several motion modes of exosomes were revealed by single particle tracking (SPT). The changes between motion modes were also detected, presenting the dynamic courses of exosome attachment onto plasma membrane and exosome uptake. Octadecyl rhodamine B chloride (R18) was found to be useful to distinguish endocytosis from fusion during exosome uptake. Colocalization with organelle markers showed exosomes were sorted to acidic vesicles after internalization. The results provide new sight into the exosome-cell interaction mode and the intercellular trafficking of exosomes. This study will help to understand the roles of exosomes at cell level. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 07/2013; 228(7). DOI:10.1002/jcp.24304 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amphiphilic stearyl methacrylate/methylacrylic acid copolymers (PSMs) were used as phase transfer reagents to convert CdSe/ZnS core-shell quantum dots (QDs) in chloroform to water-soluble PSMs-coated quantum dots (PSM-QDs). The optical properties and stability of PSM-QDs were influenced by the hydrophobic moiety ratios of PSMs, the PSM/QDs mass/volume ratio and the reaction time. The resulting PSM-QDs on optimum reaction conditions retained 60% of the photoluminescence value of the original CdSe/ZnS QDs in chloroform. The carboxylate-based PSM-QDs survived UV irradiation in air for at least 15 days. Upon UV irradiation, the PSM-QDs became about 2 times brighter than the original CdSe/ZnS QDs in chloroform, and the UV-brightened PL can retain the brightness for at least several months. Experimental results further confirmed the stability of PSM-QDs against strong acid, photochemical and thermal treatments. In addition to good performance of PSM-QDs, the synthesis of PSM and the corresponding water-soluble QDs is relatively simple.
    Colloids and Surfaces A Physicochemical and Engineering Aspects 10/2009; 350(1-3):121-129. DOI:10.1016/j.colsurfa.2009.09.014 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy.
    Journal of The Royal Society Interface 09/2009; 7(42):3-18. DOI:10.1098/rsif.2009.0243 · 3.86 Impact Factor