Role of the acidic N ' region of cardiac troponin I in regulating myocardial function

Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
The FASEB Journal (Impact Factor: 5.48). 05/2008; 22(4):1246-57. DOI: 10.1096/fj.07-9458com
Source: PubMed

ABSTRACT Cardiac troponin I (cTnI) phosphorylation modulates myocardial contractility and relaxation during beta-adrenergic stimulation. cTnI differs from the skeletal isoform in that it has a cardiac specific N' extension of 32 residues (N' extension). The role of the acidic N' region in modulating cardiac contractility has not been fully defined. To test the hypothesis that the acidic N' region of cTnI helps regulate myocardial function, we generated cardiac-specific transgenic mice in which residues 2-11 (cTnI(Delta2-11)) were deleted. The hearts displayed significantly decreased contraction and relaxation under basal and beta-adrenergic stress compared to nontransgenic hearts, with a reduction in maximal Ca(2+)-dependent force and maximal Ca(2+)-activated Mg(2+)-ATPase activity. However, Ca(2+) sensitivity of force development and cTnI-Ser(23/24) phosphorylation were not affected. Chemical shift mapping shows that both cTnI and cTnI(Delta2-11) interact with the N lobe of cardiac troponin C (cTnC) and that phosphorylation at Ser(23/24) weakens these interactions. These observations suggest that residues 2-11 of cTnI, comprising the acidic N' region, do not play a direct role in the calcium-induced transition in the cardiac regulatory or N lobe of cTnC. We hypothesized that phosphorylation at Ser(23/24) induces a large conformational change positioning the conserved acidic N region to compete with actin for the inhibitory region of cTnI. Consistent with this hypothesis, deletion of the conserved acidic N' region results in a decrease in myocardial contractility in the cTnI(Delta2-11) mice demonstrating the importance of acidic N' region in regulating myocardial contractility and mediating the response of the heart to beta-AR stimulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137-147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
    Biophysical Journal 01/2015; 108(2):395-407. DOI:10.1016/j.bpj.2014.11.3461 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 02/2013; 46(2). DOI:10.1590/1414-431X20122515 · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30-40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease.
    Journal of Biological Chemistry 03/2011; 286(12):9913-9. DOI:10.1074/jbc.R110.171801 · 4.60 Impact Factor