Role of the acidic N ' region of cardiac troponin I in regulating myocardial function

Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
The FASEB Journal (Impact Factor: 5.04). 05/2008; 22(4):1246-57. DOI: 10.1096/fj.07-9458com
Source: PubMed

ABSTRACT Cardiac troponin I (cTnI) phosphorylation modulates myocardial contractility and relaxation during beta-adrenergic stimulation. cTnI differs from the skeletal isoform in that it has a cardiac specific N' extension of 32 residues (N' extension). The role of the acidic N' region in modulating cardiac contractility has not been fully defined. To test the hypothesis that the acidic N' region of cTnI helps regulate myocardial function, we generated cardiac-specific transgenic mice in which residues 2-11 (cTnI(Delta2-11)) were deleted. The hearts displayed significantly decreased contraction and relaxation under basal and beta-adrenergic stress compared to nontransgenic hearts, with a reduction in maximal Ca(2+)-dependent force and maximal Ca(2+)-activated Mg(2+)-ATPase activity. However, Ca(2+) sensitivity of force development and cTnI-Ser(23/24) phosphorylation were not affected. Chemical shift mapping shows that both cTnI and cTnI(Delta2-11) interact with the N lobe of cardiac troponin C (cTnC) and that phosphorylation at Ser(23/24) weakens these interactions. These observations suggest that residues 2-11 of cTnI, comprising the acidic N' region, do not play a direct role in the calcium-induced transition in the cardiac regulatory or N lobe of cTnC. We hypothesized that phosphorylation at Ser(23/24) induces a large conformational change positioning the conserved acidic N region to compete with actin for the inhibitory region of cTnI. Consistent with this hypothesis, deletion of the conserved acidic N' region results in a decrease in myocardial contractility in the cTnI(Delta2-11) mice demonstrating the importance of acidic N' region in regulating myocardial contractility and mediating the response of the heart to beta-AR stimulation.

Download full-text


Available from: Paul R Rosevear, Sep 28, 2015
25 Reads
  • Source
    • "Troponin, in conjunction with tropomyosin, functions as a molecular switch and regulates muscle contraction in response to changes in the intracellular Ca2+ concentration. Troponin consists of three subunits, including the Ca2+-binding subunit troponin C, the tropomyosin-binding subunit T, and the inhibitory subunit troponin I 5. cTnI plays a key role in the regulation of cardiac muscle contraction 6,7. As a major physiological mechanism for altering myofilament properties, the phosphorylation of cTnI stimulates a conformational change of troponin and regulates cardiomyocyte contractility 8,9. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 02/2013; 46(2). DOI:10.1590/1414-431X20122515 · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac myosin binding protein-C (cMyBP-C) phosphorylation modulates cardiac contractility. When expressed in cMyBP-C-null (cMyBP-C((t/t))) hearts, a cMyBP-C phosphomimetic (cMyBP-C(AllP+)) rescued cardiac dysfunction and protected the hearts from ischemia/reperfusion injury. However, cMyBP-C function may be dependent on the myosin isoform type. Because these replacements were performed in the mouse heart, which contains predominantly alpha-myosin heavy chain (alpha-MyHC), the applicability of the data to humans, whose cardiomyocytes contain predominantly beta-MyHC, is unclear. We determined the effect(s) of cMyBP-C phosphorylation in a beta-MyHC transgenic mouse heart in which >80% of the alpha-MyHC was replaced by beta-MyHC, which is the predominant myosin isoform in human cardiac muscle. To determine the effects of cMyBP-C phosphorylation in a beta-MyHC background, transgenic mice expressing normal cMyBP-C (cMyBP-C(WT)), nonphosphorylatable cMyBP-C (cMyBP-C(AllP)(-)), or cMyBP-C(AllP+) were bred into the beta-MyHC background (beta). These mice were then crossed into the cMyBP-C((t/t)) background to ensure the absence of endogenous cMyBP-C. cMyBP-C((t/t)/beta) and cMyBP-C(AllP)(-)(:(t/t)/beta) mice died prematurely because of heart failure, confirming that cMyBP-C phosphorylation is essential in the beta-MyHC background. cMyBP-C(AllP+:(t/t)/beta) and cMyBP-C(WT:(t/t)/beta) hearts showed no morbidity and mortality, and cMyBP-C(AllP+:(t/t)/beta) hearts were significantly cardioprotected from ischemia/reperfusion injury. cMyBP-C phosphorylation is necessary for basal myocardial function in the beta-MyHC background and can preserve function after ischemia/reperfusion injury. Our studies justify exploration of cMyBP-C phosphorylation as a therapeutic target in the human heart.
    Circulation 03/2009; 119(9):1253-62. DOI:10.1161/CIRCULATIONAHA.108.798983 · 14.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is evidence for PKC-dependent multisite phosphorylation of cardiac troponin I (cTnI) at Ser-23 and Ser-24 (also PKA sites) in the cardiac-specific N-terminal extension and at Thr-144, a unique residue in the inhibitory region. The functional effect of these phosphorylations in combination is of interest in view of data indicating intramolecular interaction between the N-terminal extension and the inhibitory region of cTnI. To determine the role of PKC-dependent phosphorylation of cTnI on sarcomeric function, we measured contractile regulation at multiple levels of complexity. Ca(2+) binding to thin filaments reconstituted with either cTnI(wild-type) or pseudo-phosphorylated cTnI(S23D/S24D), cTnI(T144E), and cTnI(S23D/S24D/T144E) was determined. Compared with controls regulated by cTnI(wild-type), thin filaments with cTnI(S23D/S24D) and cTnI(S23D/S24D/T144E) exhibited decreased Ca(2+) sensitivity. In contrast, there was no significant difference between Ca(2+) binding to thin filaments with cTnI(wild-type) and with cTnI(T144E). Studies of the pCa-force relations in skinned papillary fibers regulated by these forms of cTnI yielded similar results. However, in both the Ca(2+) binding measurements and the skinned fiber tension measurements, the presence of cTnI(S23D/S24D/T144E) induced a much lower Hill coefficient than either wild type, S23D/S24D, or T144E. These data highlight the importance of thin filament-based cooperative mechanisms in cardiac regulation, with implications for mechanisms of control of function in normal and pathological hearts.
    Journal of Biological Chemistry 02/2010; 285(16):11810-7. DOI:10.1074/jbc.M109.055657 · 4.57 Impact Factor
Show more