Article

Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus.

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
BMC Microbiology (Impact Factor: 2.98). 02/2007; 7:99. DOI: 10.1186/1471-2180-7-99
Source: DOAJ

ABSTRACT Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.
We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.
USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.

0 Bookmarks
 · 
211 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP). At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA) pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i) any mutation of the restriction site reduced the signal to zero; (ii) double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii) a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same unpurified mixture in broad-range PCR applications.
    PLoS ONE 05/2014; 9(5):e97826. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the last 2 decades, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains have dramatically increased the global burden of S. aureus infections. The pandemic sequence type (ST)8/pulsed-field gel type USA300 is the dominant CA-MRSA clone in the United States, but its evolutionary history and basis for biological success are incompletely understood. Here, we use whole-genome sequencing of 387 ST8 isolates drawn from an epidemiological network of CA-MRSA infections and colonizations in northern Manhattan to explore short-term evolution and transmission patterns. Phylogenetic analysis predicted that USA300 diverged from a most common recent ancestor around 1993. We found evidence for multiple introductions of USA300 and reconstructed the phylogeographic spread of isolates across neighborhoods. Using pair-wise single-nucleotide polymorphism distances as a measure of genetic relatedness between isolates, we observed that most USA300 isolates had become endemic in households, indicating their critical role as reservoirs for transmission and diversification. Using the maximum single-nucleotide polymorphism variability of isolates from within households as a threshold, we identified several possible transmission networks beyond households. Our study also revealed the evolution of a fluoroquinolone-resistant subpopulation in the mid-1990s and its subsequent expansion at a time of high-frequency outpatient antibiotic use. This high-resolution phylogenetic analysis of ST8 has documented the genomic changes associated with USA300 evolution and how some of its recent evolution has been shaped by antibiotic use. By integrating whole-genome sequencing with detailed epidemiological analyses, our study provides an important framework for delineating the full diversity and spread of USA300 and other emerging pathogens in large urban community populations.
    Proceedings of the National Academy of Sciences 04/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several oligopeptide permease (Opp) systems have been found in staphylococcal species, including Opp1-4, Opp3' and the arginine catabolic mobile element (ACME)-encoded Opp system (ACME-Opp). They confer upon bacteria the increasing fitness, but their evolutionary histories remain unclear. In this work, we performed a genome-wide identification of Opp systems in staphylococcal species. Novel Opp systems were identified, including the duplicate of Opp4 in S. pseudintermedius and the ACME-Opp-like systems in coagulase-negative staphylococci (CoNS). Phylogenetic analysis revealed that all of the identified Opp systems were derived from Opp3 system by operon duplication during species divergence, while lateral gene transfer might also confer to dissemination of Opp in staphylococci. In addition, we proposed an improved theory on evolution of ACME: the Opp and arginine-deiminase systems were firstly transferred from S. haemolyticus to S. epidermidis independently; in S. epidermidis they were assembled together and than transferred to S. aureus.
    Genomics 05/2014; · 2.79 Impact Factor

Full-text (3 Sources)

Download
81 Downloads
Available from
Jun 3, 2014