Article

Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis.

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Japan.
Bioscience Biotechnology and Biochemistry (Impact Factor: 1.27). 12/2007; 71(11):2845-7. DOI: 10.1271/bbb.70315
Source: PubMed

ABSTRACT To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A chitosan plate assay was employed to screen for chitosanase-producing bacterial strains and isolate 141 was found to exhibit high activity. Characterization of this isolate revealed that it belonged to Mitsuaria (designated as Mitsuaria sp. 141). The encoded chitosanase (choA) gene was then cloned by PCR and the deduced amino acid sequence showed 98% identity to a formerly described Mitsuaria chitosanitabida 3001 ChoA (McChoA). Surprisingly, the ChoA encoded by Mitsuaria sp. 141 (MsChoA) appeared to have a much higher optimum temperature compared to McChoA. Site-directed mutagenesis was then employed to generate five MschoA mutant genes encoding MsChoA K204Q, R216K, T222N, R216K/T222N, or K204Q/R216K/T222N. All the ChoA mutants exhibited a much lower specific activity and a lower optimum temperature. The results confirmed that the substitution of three non-conserved amino acids accounts for the major reduction of the enzyme activity in MsChoA. Furthermore, the MschoA gene was cloned for over-expression in Pichia pastoris after coding sequence optimization. One of the P. pastoris transformants with Mut(S) phenotype was found to produce 1,480.2 ± 340.9 U ChoA mL(-1) of cell culture by high-cell-density fermentation. This represents the highest yield of recombinant ChoA production that has ever been reported thus far. The recombinant P. pastoris strain should therefore be well suited for industrial-scale production of chitosanase.
    Applied Microbiology and Biotechnology 02/2012; · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.
    Biotechnology Letters 01/2011; 33(1):1-9. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yeasts are promising hosts for industrial bio-refinery applications. In yeast cell surface displays, functional proteins, such as cellulases or lipases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae is the most commonly used yeast for cell surface display. Engineered yeasts have been utilized for a variety of applications, such as bioethanol production, chemicals synthesis, adsorption of environmental pollutants, and protein evolution. Here, we summarize recent developments in yeast cell surface display techniques for bio-refinery applications, including methods using hosts such as Pichia pastoris, Yarrowia lipolytica, and S. cerevisiae, focusing on the characteristics of anchor proteins and applications.
    Applied Microbiology and Biotechnology 06/2012; 95(3):577-91. · 3.69 Impact Factor