Article

Molecular dynamics simulation of human LOX-1 provides an explanation for the lack of OxLDL binding to the Trp150Ala mutant.

Department of Biology and Center of Biostatistics and Bioinformatics, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy, 00133.
BMC Structural Biology (Impact Factor: 2.1). 02/2007; 7:73. DOI: 10.1186/1472-6807-7-73
Source: PubMed

ABSTRACT Dimeric lectin-like oxidized low-density lipoprotein receptor-1 LOX-1 is the target receptor for oxidized low density lipoprotein in endothelial cells. In vivo assays revealed that in LOX-1 the basic spine arginine residues are important for binding, which is lost upon mutation of Trp150 with alanine. Molecular dynamics simulations of the wild-type LOX-1 and of the Trp150Ala mutant C-type lectin-like domains, have been carried out to gain insight into the severe inactivating effect.
The mutation does not alter the dimer stability, but a different dynamical behaviour differentiates the two proteins. As described by the residues fluctuation, the dynamic cross correlation map and the principal component analysis in the wild-type the two monomers display a symmetrical motion that is not observed in the mutant.
The symmetrical motion of monomers is completely damped by the structural rearrangement caused by the Trp150Ala mutation. An improper dynamical coupling of the monomers and different fluctuations of the basic spine residues are observed, with a consequent altered binding affinity.

0 Bookmarks
 · 
47 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor that mediates the recognition, the binding and internalization of ox-LDL. A truncated soluble form of LOX-1 (sLOX-1) has been identified that, at elevated levels, has been associated to acute coronary syndrome. Human sLOX-1 is the extracellular part of membrane LOX-1 which is cleaved in the NECK domain with a mechanism that has not yet been identified. Purification of human sLOX-1 has been carried out to experimentally identify the cleavage site region within the NECK domain. Molecular modelling and classical molecular dynamics simulation techniques have been used to characterize the structural and dynamical properties of the LOX-1 NECK domain in the presence and absence of the CTLD recognition region, taking into account the obtained proteolysis results. The simulative data indicate that the NECK domain is stabilized by the coiled-coil heptad repeat motif along the simulations, shows a definite flexibility pattern and is characterized by specific electrostatic potentials. The detection of a mobile inter-helix space suggests an explanation for the in vivo susceptibility of the NECK domain to the proteolytic cleavage, validating the assumption that the NECK domain sequence is composed of a coiled-coil motif destabilized in specific regions of functional significance.
    Archives of Biochemistry and Biophysics 10/2013; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the L-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.
    Biochemical and Biophysical Research Communications 07/2013; · 2.41 Impact Factor

Full-text

View
0 Downloads
Available from