Calcium Cycling and Signaling in Cardiac Myocytes

Department of Physiology and Cardiovascular Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
Annual Review of Physiology (Impact Factor: 18.51). 02/2008; 70(1):23-49. DOI: 10.1146/annurev.physiol.70.113006.100455
Source: PubMed


Calcium (Ca) is a universal intracellular second messenger. In muscle, Ca is best known for its role in contractile activation. However, in recent years the critical role of Ca in other myocyte processes has become increasingly clear. This review focuses on Ca signaling in cardiac myocytes as pertaining to electrophysiology (including action potentials and arrhythmias), excitation-contraction coupling, modulation of contractile function, energy supply-demand balance (including mitochondrial function), cell death, and transcription regulation. Importantly, although such diverse Ca-dependent regulations occur simultaneously in a cell, the cell can distinguish distinct signals by local Ca or protein complexes and differential Ca signal integration.

1 Follower
10 Reads
  • Source
    • "Cyclic adenosine 3 ′ ,5 ′ -monophosphate (cAMP) is the main second messenger of the β-adrenergic receptor signaling inducing phosphorylation of the LTCC and the ryanodine receptor to increase the amount of intracellular Ca 2+ necessary for heart contractility (responsible for positive chronotropic and inotropic effects during sympathetic stimulation) (Guellich et al., 2014). Moreover, catecholamine stimulated β-adrenergic receptor not only leads to cAMP effector dependent-troponin I phosphorylation to allow faster force development and shortening during systole and faster force relaxation and re-lengthening during diastole but also mediated cAMP effector dependent-phospholamban phosphorylation responsible for Ca 2+ re-uptake in the sarcoplasmic reticulum and myofilament relaxation (lusitropic effects) (Bers, 2008). However sustained stimulation of this pathway may be detrimental thus leading to cardiac remodeling and development of heart failure (Brodde, 1993; Kiuchi et al., 1993). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
    Frontiers in Pharmacology 10/2015; 6. DOI:10.3389/fphar.2015.00203 · 3.80 Impact Factor
  • Source
    • "This approximately 10-fold increase in cytosolic calcium concentration activates calcium-sensitive contractile proteins (troponin C; TN-C), which then use ATP to produce tension and muscle contraction. For muscle relaxation to occur, calcium is removed from the cytosol—approximately 30% is transported out of the cell (primarily by the sodium-calcium exchanger [NCX] and plasma membrane calcium ATPase [PMCA]) while 70% is pumped back into the SR via the cardiac SR calcium ATPase (SERCA2a) (Bers, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiomyocyte function depends on coordinated movements of calcium into and out of the cell and the proper delivery of ATP to energy-utilizing enzymes. Defects in calcium-handling proteins and abnormal energy metabolism are features of heart failure. Recent discoveries have led to gene-based therapies targeting calcium-transporting or -binding proteins, such as the cardiac sarco(endo)plasmic reticulum calcium ATPase (SERCA2a), leading to improvements in calcium homeostasis and excitation-contraction coupling. Here we review impaired calcium cycling and energetics in heart failure, assessing their roles from both a mutually exclusive and interdependent viewpoint, and discuss therapies that may improve the failing myocardium. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 02/2015; 21(2):183-194. DOI:10.1016/j.cmet.2015.01.005 · 17.57 Impact Factor
  • Source
    • "These features are similar to those observed in failing human heart specimens and genetic cardiomyopathies (Sun et al., 2012), confirming that the changes in the pattern of sarcomere staining do reflect structural abnormality. As loss of sarcomeric integrity disturbs the close physical coupling between calcium release units and contractile proteins (Bers, 2008), we investigated the functional consequences of sarcomeric disarray. In CMs exposed to DM, the frequency of systolic calcium transients decreased (Figure 2G). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 11/2014; 9(3):810-20. DOI:10.1016/j.celrep.2014.09.055 · 8.36 Impact Factor
Show more