Article

Collaboration between hepatic and intratumoral prodrug activation in a P450 prodrug-activation gene therapy model for cancer treatment

Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
Molecular Cancer Therapeutics (Impact Factor: 6.11). 12/2007; 6(11):2879-90. DOI: 10.1158/1535-7163.MCT-07-0297
Source: PubMed

ABSTRACT Presently, we investigate the mechanisms whereby intratumoral expression of a cyclophosphamide-activating hepatic cytochrome P450 gene enhances therapeutic activity when cyclophosphamide is given on an every 6-day (metronomic) schedule. In P450-deficient 9L gliosarcomas grown in severe combined immunodeficient mice, metronomic cyclophosphamide substantially decreased tumor microvessel density and induced a approximately 70% loss of endothelial cells that began after the second cyclophosphamide treatment. These responses were accompanied by increased expression of the endogenous angiogenesis inhibitor thrombospondin-1 in tumor-associated host cells but by decreased expression in 9L tumor cells. These antiangiogenic responses preceded tumor regression and are likely key to the therapeutic activity of metronomic cyclophosphamide. Unexpectedly, 9L/2B11 tumors, grown from 9L cells infected with retrovirus encoding the cyclophosphamide-activating P450 2B11, exhibited antiangiogenic responses very similar to 9L tumors. This indicates that the tumor endothelial cell population is well exposed to liver-activated cyclophosphamide metabolites and that intratumoral P450 confers limited additional anti-endothelial cell bystander activity. In contrast, an increase in apoptosis, which preceded the antiangiogenic response, was substantially enhanced by intratumoral P450 2B11 expression. 9L/2B11 tumor regression was accompanied by an overall loss of tumor cellularity and by substantial enlargement of remaining P450-immunoreactive tumor cells as the number of P450-positive tumor cell decreased and the P450 protein content declined with cyclophosphamide treatment. We conclude that metronomic cyclophosphamide regresses P450-expressing tumors by two independent but complementary mechanisms: increased tumor cell killing via intratumoral P450-catalyzed prodrug activation, coupled with strong antiangiogenic activity, which is primarily associated with hepatic prodrug activation.

0 Followers
 · 
32 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated in vitro the metabolic capability of 3 extrahepatic cytochromes P-450, CYP1A1, 1B1 and 2J2, known to be over-expressed in various tumors, to biotransform 5 tyrosine kinase inhibitors (TKI): dasatinib, imatinib, nilotinib, sorafenib and sunitinib. Moreover, mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in 6 hepatocellular and 14 renal cell carcinoma tumor tissues and their surrounding healthy tissues, was determined. Our results show that CYP1A1, 1B1 and especially 2J2 can rapidly biotransform the studied TKIs with a metabolic efficiency similar to that of CYP3A4. The mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in tumor biopsies has shown i) the strong variability of CYP expression and ii) distinct outliers showing high expression levels (esp. CYP2J2) that are compatible with high intratumoral CYP activity and tumor-specific TKI degradation. CYP2J2 inhibition could be a novel clinical strategy to specifically increase the intratumoral rather than plasma TKI levels, improving TKI efficacy and extending the duration before relapse. Such an approach would be akin to beta-lactamase inhibition, a classical strategy to avoid antibiotic degradation and resistance.
    PLoS ONE 05/2014; 9(5):e95532. DOI:10.1371/journal.pone.0095532 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Metronomic cyclophosphamide given on an intermittent, 6-day repeating schedule, but not on an exposure dose-equivalent daily schedule, activates an anti-tumor innate immune response that leads to major regression of large implanted gliomas, without anti-angiogenesis. Methods and approach Mice bearing implanted 9L gliomas were used to investigate the effects of this 6-day repeating, immunogenic cyclophosphamide schedule on myeloid-derived suppressor cells, which are pro-angiogenic and can inhibit anti-tumor immunity, and to elucidate the mechanism whereby the innate immune cell-dependent tumor regression response to metronomic cyclophosphamide treatment is blocked by several anti-angiogenic receptor tyrosine kinase inhibitors. Results Intermittent metronomic cyclophosphamide scheduling strongly increased glioma-associated CD11b+ immune cells but not CD11b+Gr1+ myeloid-derived suppressor cells, while bone marrow and spleen reservoirs of the suppressor cells were decreased. The inhibition of immune cell recruitment and tumor regression by anti-angiogenic receptor tyrosine kinase inhibitors, previously observed in several brain tumor models, was recapitulated in the 9L tumor model with the VEGFR2-specific inhibitory monoclonal antibody DC101 (p < 0.01), implicating VEGFR2 signaling as an essential step in metronomic cyclophosphamide-stimulated immune cell recruitment. In contrast, sorafenib, a multi-receptor tyrosine kinase inhibitor with comparatively weak VEGF receptor phosphorylation inhibitory activity, was strongly anti-angiogenic but did not block metronomic cyclophosphamide-induced innate immunity or tumor regression (p > 0.05). Conclusions The interference by receptor tyrosine kinase inhibitors in the immunogenic actions of intermittent metronomic chemotherapy is not a consequence of anti-angiogenesis per se, as demonstrated in an implanted 9L tumor model. Furthermore, this undesirable interaction with tyrosine kinase inhibitors can be avoided by using anti-angiogenic drugs that spare the VEGFR2 pathway.
    Molecular Cancer 06/2014; 13(1):158. DOI:10.1186/1476-4598-13-158 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
    International Journal of Molecular Sciences 01/2014; 16(1):284-306. DOI:10.3390/ijms16010284 · 2.46 Impact Factor

Preview

Download
0 Downloads
Available from