Article

Evaluation of a new assay in comparison with reverse hybridization and sequencing methods for hepatitis C virus genotyping targeting both 5' noncoding and nonstructural 5b genomic regions.

Microbiology Department, Hospital Universitari Germans Trias i Pujol, Ctra de Canyet, s/n. 08916 Badalona, Spain.
Journal of clinical microbiology (Impact Factor: 4.16). 02/2008; 46(1):192-7. DOI:10.1128/JCM.01623-07
Source: PubMed

ABSTRACT We report the evaluation of a new real-time PCR assay for hepatitis C virus (HCV) genotyping. The assay design is such that genotype 1 isolates are typed by amplification targeting the nonstructural 5b (NS5b) subgenomic region. Non-genotype 1 isolates are typed by type-specific amplicon detection in the 5' noncoding region (5'NC) (method 1; HCV genotyping analyte-specific reagent assay). This method was compared with 5'NC reverse hybridization (method 2; InnoLiPA HCV II) and 5'NC sequencing (method 3; Trugene HCV 5'NC). Two hundred ninety-five sera were tested by method 1; 223 of them were also typed by method 2 and 89 by method 3. Sequencing and phylogenetic analysis of an NS5b fragment were used to resolve discrepant results. Suspected multiple-genotype infections were confirmed by PCR cloning and pyrosequencing. Even though a 2% rate of indeterminates was obtained with method 1, concordance at the genotype level with results with methods 2 and 3 was high. Among eight discordant results, five mixed infections were confirmed. Genotype 1 subtyping efficiencies were 100%, 77%, and 74% for methods 1, 2, and 3, respectively; there were 11/101 discordants between methods 1 and 2 (method 1 was predominantly correct) and 2/34 between methods 2 and 3. Regarding genotype 2, subtyping efficiencies were 100%, 45%, and 92% by methods 1, 2, and 3, respectively; NS5b sequencing of discordants (16/17) revealed a putative new subtype within genotype 2 and that most subtype calls were not correct. Although only sequencing-based methods provide the possibility of identifying new variants, the real-time PCR method is rapid, straightforward, and simple to interpret, thus providing a good single-step alternative to more-time-consuming assays.

1 0
 · 
1 Bookmark
 · 
45 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Here, we report the first patient derived hepatitis C virus (HCV) complete genome from Pakistan. Comprehensive evolutionary and phylogenetic analyses were conducted. The comparison was made in order to identify evolutionary and molecular phylogenetic relationships among HCV strains belonging to genotype 1a. The evolutionary divergence analysis for nucleotide and amino acid sequences, conducted by equal input model, suggested that evolutionary nucleotide and amino acid distances showed that the HCV Pakistani strain was genetically far from Denmark strain (0.29400 nt, 0.819646 aa) and near to German strain (0.06557 nt, 0.139449 aa), respectively. The current study will help to understand phylogenetic of Pakistani isolates.
    Virology Journal 06/2013; 10(1):211. · 2.09 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Hepatitis C virus (HCV) genotyping is mandatory for tailoring dose and duration of pegylated interferon-α plus ribavirin treatment and for deciding on triple therapy eligibility. Additionally, subtyping may play a role in helping to select future treatment regimens that include directly-acting antivirals. However, commercial assays for HCV genotyping fail to identify the genotype/subtype in some cases. OBJECTIVE: Our aims were (i) to determine the success rate of the commercial genotyping assay Abbott RealTime HCV Genotype II at identifying the genotype and the HCV-1 subtype; and (ii) to phylogenetically characterise the obtained indeterminate results. STUDY DESIGN: HCV genotyping results obtained between 2009 and 2012 in a Spanish reference hospital were reviewed. A total of 896 people were genotyped with the Abbott RealTime HCV Genotype II assay. Specimens with an indeterminate result were retrospectively genotyped using the reference method based on the phylogenetic analysis of HCV NS5B sequences. RESULTS: Using the commercially available assay, an indeterminate HCV genotype result was obtained in 20 of 896 patients (2.2%); these corresponded to genotypes 3a, 3k and 4d. Importantly, 8.6% of all cases where genotype 3 was detected were indeterminate. In addition, the HCV-1 subtype was not assigned in 29 of 533 cases (5.4%). CONCLUSIONS: The implementation in the clinical microbiology laboratory of the reference method for HCV genotyping allows indeterminate genotype/subtype results to be interpreted and may lead to the identification of previously uncharacterised subtypes.
    Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 05/2013; · 3.12 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The aim of this study was to gain further insight into the evolution and classification of hepatitis C virus (HCV) by assessing the subtype distribution of 273 genotype 2 strains isolated from French blood donors from 1990 to 2010 and by determining complete coding sequences in subtype 2 strains. These classified into 7 of the established subtypes and into 15 additional lineages not yet assigned to a known subtype. Phylogenetic tree construction showed two well-supported clusters. Cluster 1 included most subtype 2 strains while cluster 2 included subtype 2l and one unassigned subtype 2. Full genome sequencing was performed on 15 genotype 2 strains belonging to both clusters, that is, one subtype 2b, two subtype 2c, three subtype 2i, two subtype 2j, one subtype 2k, two subtype 2l, and four unassigned strains. Genomes included a 9,042-9,108-nucleic acid open reading frame coding for a polyprotein comprising 3,014-3,036 amino acids. Mean nucleotide distances between subtypes belonging to the first cluster was 20.2 ± 1.4% while the mean distance between the two clusters was 25.9 ± 0.3%. Analysis indicated that the bifurcation between subtype 2l and other subtype 2 strains occurred early in the evolutionary process. Subtype 2l retained a genomic feature characteristic of non-genotype 2, that is, absence of the 60-nucleotide insertion in the NS5A region. This finding suggests that appearance and fixation of this insertion occurred late in the evolutionary history of HCV type 2 and that its absence is an ancestral feature of HCV. J. Med. Virol. © 2013 Wiley Periodicals, Inc.
    Journal of Medical Virology 07/2013; · 2.37 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
Sep 16, 2013