Functional neuroanatomical investigation of vision-related acupuncture point specificity-A multisession fMRI study

Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Human Brain Mapping (Impact Factor: 6.92). 01/2009; 30(1):38-46. DOI: 10.1002/hbm.20481
Source: PubMed

ABSTRACT The concept that specific acupuncture points have salubrious effects on distant target organ systems is a salient feature of Traditional Chinese Medicine (TCM). In this study, we used a multiple-session experiment to test whether electroacupuncture stimulation at two TCM vision-related acupoints, UB 60 and GB 37, located on the leg, could produce fMRI signal changes in the occipital regions of the brain, and the specificity of this effect when compared with stimulation at an adjacent non-acupoint (NAP). Six normal, acupuncture naive subjects completed the study. Each subject participated in six identical scanning sessions. Voxelwise group analysis showed that electroacupuncture stimulation at both vision-related acupoints and the NAP produced modest, comparable fMRI signal decreases in the occipital cortex, including the bilateral cuneus, calcarine fissure and surrounding areas, lingual gyrus, and lateral occipital gyrus. Further analysis of fMRI signal changes in occipital cortex showed no significant difference among the three points, UB 60, GB 37, and NAP. Our results thus do not support the view that acupuncture stimulation at vision-related acupoints induces specific fMRI blood oxygen level dependent (BOLD) signal changes in the occipital cortex. We speculate that cross modal inhibition, produced by needling-evoked somatosensory stimulation, may account for our finding of BOLD signal decreases in the occipital cortex. Given the complexity of acupuncture systems and brain activity, additional work is required to determine whether functional neuroanatomical correlates of acupoint specificity can be validated by means of brain imaging tools.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.
    Neural Regeneration Research 03/2014; 9(5):549-54. DOI:10.4103/1673-5374.130082 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture stimulation increases local blood flow around the site of stimulation and induces signal changes in brain regions related to the body matrix. The rubber hand illusion (RHI) is an experimental paradigm that manipulates important aspects of bodily self-awareness. The present study aimed to investigate how modifications of body ownership using the RHI affect local blood flow and cerebral responses during acupuncture needle stimulation. During the RHI, acupuncture needle stimulation was applied to the real left hand while measuring blood microcirculation with a LASER Doppler imager (Experiment 1, N = 28) and concurrent brain signal changes using functional magnetic resonance imaging (fMRI; Experiment 2, N = 17). When the body ownership of participants was altered by the RHI, acupuncture stimulation resulted in a significantly lower increase in local blood flow (Experiment 1), and significantly less brain activation was detected in the right insula (Experiment 2). This study found changes in both local blood flow and brain responses during acupuncture needle stimulation following modification of body ownership. These findings suggest that physiological responses during acupuncture stimulation can be influenced by the modification of body ownership.
    PLoS ONE 10/2014; 9(10):e109489. DOI:10.1371/journal.pone.0109489 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fundamental aspects of human behavior operate outside of conscious awareness. Yet, theories of conditioned responses in humans, such as placebo and nocebo effects on pain, have a strong emphasis on conscious recognition of contextual cues that trigger the response. Here, we investigated the neural pathways involved in nonconscious activation of conditioned pain responses, using functional magnetic resonance imaging in healthy participants. Nonconscious compared with conscious activation of conditioned placebo analgesia was associated with increased activation of the orbitofrontal cortex, a structure with direct connections to affective brain regions and basic reward processing. During nonconscious nocebo, there was increased activation of the thalamus, amygdala, and hippocampus. In contrast to previous assumptions about conditioning in humans, our results show that conditioned pain responses can be elicited independently of conscious awareness and our results suggest a hierarchical activation of neural pathways for nonconscious and conscious conditioned responses. Demonstrating that the human brain has a nonconscious mechanism for responding to conditioned cues has major implications for the role of associative learning in behavioral medicine and psychiatry. Our results may also open up for novel approaches to translational animal-to-human research since human consciousness and animal cognition is an inherent paradox in all behavioral science. © The Author 2014. Published by Oxford University Press.
    Cerebral Cortex 12/2014; DOI:10.1093/cercor/bhu275 · 8.31 Impact Factor