IGF-1 induces SREBP-1 expression and lipogenesis in SER-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway

The Jake Gittlen Cancer Research Foundation, Hershey, Pennsylvania, USA.
Journal of Investigative Dermatology (Impact Factor: 6.19). 06/2008; 128(5):1286-93. DOI: 10.1038/sj.jid.5701155
Source: PubMed

ABSTRACT Understanding the factors that regulate sebum production is important in identifying therapeutic targets for acne therapy. Insulin and IGF-1 stimulate sebaceous gland lipogenesis. IGF-1 increases expression of sterol response element-binding protein-1 (SREBP-1), a transcription factor that regulates numerous genes involved in lipid biosynthesis. SREBP-1 expression, in turn, stimulates lipogenesis in sebocytes. The goal of this study was to identify the intracellular signaling pathway(s) that transduces the lipogenic signal initiated by IGF-1. Sebocytes were treated with IGF-1 and assayed for activation of the phosphoinositide 3-kinase (PI3-K) pathway and of the three major arms of the mitogen-activated protein kinase (MAPK) pathway (MAPK/extracellular signal-regulated kinase (ERK), p38 MAPK, and stress-activated protein kinase/c-Jun-N terminal kinase). IGF-1 activated the MAPK/ERK and PI-3K pathways. Using specific inhibitors of each pathway, we found that the increase in expression of SREBP-1 induced by IGF-1 was blocked in the presence of the PI3-K inhibitor but not in the presence of the MAPK/ERK inhibitor. Furthermore, inhibition of the PI3-K pathway also blocked the IGF-1-induced transcription of SREBP target genes and sebocyte lipogenesis. These data indicate that IGF-1 transmits its lipogenic signal in sebocytes through activation of Akt. Specific targeted interruption of this pathway in the sebaceous gland could be a desirable approach to reducing sebum production and improving acne.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Acne pathogenesis is a multifactorial process that occurs at the level of the pilosebaceous unit. While acne was previously perceived as an infectious disease, recent data have clarified it as an inflammatory process in which Propionibacterium acnes and innate immunity play critical roles in propagating abnormal hyperkeratinization and inflammation. Alterations in sebum composition, and increased sensitivity to androgens, also play roles in the inflammatory process. A stepwise approach to acne management utilizes topical agents for mild to moderate acne (topical retinoid as mainstay ± topical antibiotics) and escalation to oral agents for more resistant cases (oral antibiotics or hormonal agents in conjunction with a topical retinoid or oral isotretinoin alone for severe acne). Concerns over antibiotic resistance and the safety issues associated with isotretinoin have prompted further research into alternative medications and devices for the treatment of acne. Radiofrequency, laser, and light treatments have demonstrated modest improvement for inflammatory acne (with blue-light photodynamic therapy being the only US FDA-approved treatment). However, limitations in study design and patient follow-up render these modalities as adjuncts rather than standalone options. This review will update readers on the latest advancements in our understanding of acne pathogenesis and treatment, with emphasis on emerging treatment options that can help improve patient outcomes.
    American Journal of Clinical Dermatology 11/2014; DOI:10.1007/s40257-014-0099-z · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) frequently cause cutaneous adverse events. We sought to investigate the cutaneous safety profile of BRAFi versus BRAFi and MEKi combination regimens. We performed a retrospective cohort study, collecting data from 44 patients with melanoma treated either with BRAFi (vemurafenib or dabrafenib) or BRAFi and MEKi combination regimens (vemurafenib + cobimetinib or dabrafenib + trametinib). Patient characteristics, and the occurrence and severity of cutaneous adverse events, are described. The development of cutaneous adverse events was significantly less frequent (P = .012) and occurred after longer treatment time (P = .025) in patients treated with BRAFi and MEKi combination regimen compared with patients treated with BRAFi monotherapy. Among patients who received both BRAFi and the combination of BRAFi and MEKi at different time points during their treatment course, the development of squamous cell carcinoma or keratoacanthoma was significantly less frequent when they received the combination regimen (P = .008). Patients receiving vemurafenib developed more cutaneous adverse events (P = .001) and in particular more photosensitivity (P = .010) than patients who did not. There were a limited number of patients. Combination regimen with BRAFi and MEKi shows fewer cutaneous adverse events and longer cutaneous adverse event-free interval compared with BRAFi monotherapy. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
    Journal of the American Academy of Dermatology 10/2014; DOI:10.1016/j.jaad.2014.09.002 · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light-emitting diodes (LED) have been used to treat acne vulgaris. However, the efficacy of LED on sebaceous lipid production in vitro has not been examined. This study investigated the efficacy of 415 nm blue light and 630 nm red light on lipid production in human sebocytes. When applied to human primary sebocytes, 415 nm blue light suppressed cell proliferation. Based on a lipogenesis study using Oil Red O, Nile red staining, and thin-layered chromatography, 630 nm red light strongly downregulated lipid production in sebocytes. These results suggest that 415 nm blue light and 630 nm red light influence lipid production in human sebocytes and have beneficial effects on acne by suppressing sebum production.
    Archives for Dermatological Research 02/2015; DOI:10.1007/s00403-015-1547-1 · 2.27 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014