Article

Blood-brain barrier disruption in post-traumatic epilepsy

Department of Physiology, Zlotowski Center for Neuroscience, Ben-Gurion University, 84105 Beer-Sheva, Israel.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 4.87). 08/2008; 79(7):774-7. DOI: 10.1136/jnnp.2007.126425
Source: PubMed

ABSTRACT Traumatic brain injury (TBI) is an important cause of focal epilepsy. Animal experiments indicate that disruption of the blood-brain barrier (BBB) plays a critical role in the pathogenesis of post-traumatic epilepsy (PTE).
To investigate the frequency, extent and functional correlates of increased BBB permeability in patient with PTE.
32 head trauma patients were included in the study, with 17 suffering from PTE. Patients underwent brain MRI (bMRI) and were evaluated for BBB disruption, using a novel semi-quantitative technique. Cortical dysfunction was measured using electroencephalography (EEG), and localised using standardised low-resolution brain electromagnetic tomography (sLORETA).
Spectral EEG analyses revealed significant slowing in patients with TBI, with no significant differences between patients with epilepsy and those without. Although bMRI revealed that patients with PTE were more likely to present with intracortical lesions (p = 0.02), no differences in the size of the lesion were found between the groups (p = 0.19). Increased BBB permeability was found in 76.9% of patients with PTE compared with 33.3% of patients without epilepsy (p = 0.047), and could be observed years following the trauma. Cerebral cortex volume with BBB disruption was larger in patients with PTE (p = 0.001). In 70% of patients, slow (delta band) activity was co-localised, by sLORETA, with regions showing BBB disruption.
Lasting BBB pathology is common in patients with mild TBI, with increased frequency and extent being observed in patients with PTE. A correlation between disrupted BBB and abnormal neuronal activity is suggested.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The blood–brain barrier (BBB) is a dynamic and complex system which separates the brain from the blood. It helps to maintain the homeostasis of the brain, which is essential for normal neuronal functioning. BBB function is impaired in several neurological diseases, including epilepsy in which it may lead to abnormal and excessive neuronal firing. In this review we will discuss how BBB dysfunction can affect neuronal function and how this can lead to seizures and epilepsy. We will also summarize new therapies that aim to preserve or restore BBB function in order to prevent or reduce epileptogenesis.
    Seminars in Cell and Developmental Biology 11/2014; DOI:10.1016/j.semcdb.2014.10.003 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyse BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability add valuable information to standard anatomical inspections which do not take the latter into consideration. Copyright © 2014. Published by Elsevier Ltd.
    Seminars in Cell and Developmental Biology 11/2014; DOI:10.1016/j.semcdb.2014.11.007 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier is part of the neurovascular unit and serves as a functional and anatomical barrier between the blood and the extracellular space. It controls the flow of solutes in and out of the brain thereby providing an optimal environment for neuronal functioning. Paracellular transport between endothelial cells is restricted by tight junctions and transendothelial transport is reduced and more selective compared to capillaries of other organs. Further, the blood-brain barrier is involved in controlling blood flow and it is the site for signalling damage of the nervous system to the peripheral immune system. As an important player in brain homeostasis, blood-brain barrier dysfunction has been implicated in the pathophysiology of many brain diseases including stroke, traumatic brain injury, brain tumors, epilepsy and neurodegenerative disorders. In this article - highlighting recent advances in basic science - we review the features of the blood-brain barrier and their significance for neuronal homeostasis to discuss clinical implications for neurological complications following cerebral ischemia.
    Seminars in Cell and Developmental Biology 11/2014; DOI:10.1016/j.semcdb.2014.10.004 · 5.97 Impact Factor