Article

Constraint and turnover in sex-biased gene expression in the genus Drosophila

Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
Nature (Impact Factor: 42.35). 12/2007; 450(7167):233-7. DOI: 10.1038/nature06323
Source: PubMed

ABSTRACT Both genome content and deployment contribute to phenotypic differences between species. Sex is the most important difference between individuals in a species and has long been posited to be rapidly evolving. Indeed, in the Drosophila genus, traits such as sperm length, genitalia, and gonad size are the most obvious differences between species. Comparative analysis of sex-biased expression should deepen our understanding of the relationship between genome content and deployment during evolution. Using existing and newly assembled genomes, we designed species-specific microarrays to examine sex-biased expression of orthologues and species-restricted genes in D. melanogaster, D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis. We show that averaged sex-biased expression changes accumulate monotonically over time within the genus. However, different genes contribute to expression variance within species groups compared to between groups. We observed greater turnover of species-restricted genes with male-biased expression, indicating that gene formation and extinction may play a significant part in species differences. Genes with male-biased expression also show the greatest expression and DNA sequence divergence. This higher divergence and turnover of genes with male-biased expression may be due to high transcription rates in the male germline, greater functional pleiotropy of genes expressed in females, and/or sexual competition.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.
    PLoS Genetics 02/2015; 11(2):e1005015. DOI:10.1371/journal.pgen.1005015 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary sex-determination ''switches'' evolve ra-pidly, but Doublesex (DSX)-related transcription fac-tors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female-and male-specific isoforms (DSX F and DSX M), but little is known about how dsx controls sexual development, whether DSX F and DSX M bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site predic-tion, and evolutionary conservation. We find that DSX F and DSX M bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex-and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway compo-nents providing for direct and indirect regulation of sex-biased expression. INTRODUCTION
    Developmental Cell 12/2014; 31(6):761-773. DOI:10.1016/j.devcel.2014.11.021 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression levels are important molecular quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies in recent years have revealed substantial adaptive evolution at the genomic level. However, the evolutionary modes of gene expression have remained controversial. Here we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from the variation of expression within species and the time-resolved divergence across a family of related species, using a new inference method for selection. We identify functional classes of adaptively regulated genes, as well as sex-specific adaptation occurring predominantly in males. Our analysis opens a new avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

Full-text (2 Sources)

Download
40 Downloads
Available from
May 28, 2014