Article

Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia.

Department of Neurology, 2 Gibson, University of Pennsylvania School of Medicine, 3400 Spruce St, Philadelphia, PA 19104-4283, USA.
JAMA Neurology (Impact Factor: 7.58). 12/2007; 64(11):1601-9. DOI: 10.1001/archneur.64.11.1601
Source: PubMed

ABSTRACT Clinical-pathologic studies are crucial to understanding brain-behavior relations and improving diagnostic accuracy in neurodegenerative diseases.
To establish clinical, neuropsychological, and imaging features of clinically diagnosed patients with frontotemporal dementia (FTD) that help discriminate between pathologically determined tau-positive FTD, tau-negative FTD, and frontal-variant Alzheimer disease.
Retrospective clinical-pathologic survey.
Academic medical center. Patients Sixty-one participants with the clinical diagnosis of a frontotemporal spectrum disorder who underwent a neuropsychological evaluation and had an autopsy-confirmed disease.
Neuropsychological performance and high-resolution structural magnetic resonance imaging (MRI).
Distinguishing features of patients with tau-positive FTD include visual perceptual-spatial difficulty and an extrapyramidal disorder significantly more often than other patients, significant cortical atrophy in the frontal and parietal regions as evidenced on MRI, and the burden of pathology is greatest in the frontal and parietal regions. Patients with tau-negative FTD are distinguished by their greater difficulties with social, language, and verbally mediated executive functions, significant cortical atrophy in the frontal and temporal regions as evidenced on MRI, and significant frontal and temporal pathology. Patients with Alzheimer disease at autopsy have significantly impaired delayed recall during episodic memory testing; atrophy that involves temporal areas, including the hippocampus, as evidenced on MRI; and widely distributed pathology including the medial temporal structures. A discriminant function analysis grouped patients on the basis of clinical and neuropsychological features with 87.5% accuracy.
Clinical, neuropsychological, and imaging profiles can contribute to accurate antemortem diagnosis in FTD.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with the semantic variant of primary progressive aphasia, also known as semantic dementia, and Alzheimer's disease have deficits in semantic memory. However, few comparative studies have been performed to determine whether these patient groups have distinct semantic memory impairments. We asked 15 patients with semantic variant primary progressive aphasia and 57 patients with Alzheimer's disease to judge semantic category membership of coloured photos and printed words that are members of familiar natural and manufactured categories, and we related performance to grey matter atrophy. We found that both semantic variant primary progressive aphasia and Alzheimer's disease are significantly impaired on this task. Moreover, patients with semantic variant primary progressive aphasia had a significantly more prominent deficit for natural objects than their own deficit judging manufactured objects. Both semantic variant primary progressive aphasia and Alzheimer's disease had atrophy that included portions of the left temporal lobe. Regression analyses related performance in semantic variant primary progressive aphasia to ventral and medial portions of the left temporal lobe, while regression analyses in Alzheimer's disease related performance to these ventral and medial temporal areas as well as lateral temporal-parietal regions in the left hemisphere. We conclude that both semantic variant primary progressive aphasia and Alzheimer's disease are significantly impaired in a simple category membership judgement task and the selective impairment for natural kinds in semantic variant primary progressive aphasia is related in part to disease in visual association cortex in ventral-medial portions of the left temporal lobe. We discuss factors that may contribute to the semantic memory deficit in semantic variant primary progressive aphasia.
    Brain 07/2013; · 9.92 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the sensitivity and specificity of two delayed recall scores from the Modified Mini-Mental State (3MS) test with consensus clinical diagnosis to differentiate cognitive impairment due to Alzheimer's disease (AD) versus non-AD pathologies. At a memory disorders clinic, 117 cognitively impaired patients were administered a baseline 3MS test and received a contemporaneous consensus clinical diagnosis. Their brains were examined after death about 5 years later. Using logistic regression with forward selection to predict pathologically defined AD versus non-AD, 10-min delayed recall entered first (p = 0.001), followed by clinical diagnosis (p = 0.02); 1-min delayed recall did not enter. 10-min delayed recall scores ≤4 (score range = 0-9) were 87% sensitive and 47% specific in predicting AD pathology; consensus clinical diagnosis was 82% sensitive and 45% specific. For the 57 patients whose initial Mini-Mental State Examination scores were ≥19 (the median), 3MS 10-min delayed recall scores ≤4 showed some loss of sensitivity (80%) but a substantial gain in specificity (77%). In conclusion, 10-min delayed recall score on the brief 3MS test distinguished between AD versus non-AD pathology about 5 years before death at least as well as consensus clinical diagnosis that requires much more comprehensive information and complex deliberation.
    Journal of Alzheimer's disease: JAD 11/2013; · 4.17 Impact Factor