Article

Extracellular matrix and HIF-1 signaling: The role of prolidase

Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
International Journal of Cancer (Impact Factor: 5.01). 03/2007; 122(6):1435-40. DOI: 10.1002/ijc.23263
Source: PubMed

ABSTRACT Hypoxia-inducible factor-1 (HIF-1) plays an important role in stress-responsive gene expression. Although primarily sensitive to hypoxia, HIF-1 signaling can be regulated by a number of stress factors including metabolic stress, growth factors and molecules present in the extracellular matrix (ECM). Degradation of ECM by metalloproteinases (MMP) is important for tumor progression, invasion and metastasis. ECM is predominantly collagen, and the imino acids (Pro and HyPro) comprise 25% of collagen residues. The final step in collagen degradation is catalyzed by prolidase, the obligate peptidase for imidodipeptides with Pro and HyPro in the carboxyl terminus. Defective wound healing in patients with inherited prolidase deficiency is associated with histologic features of angiopathy suggesting that prolidase may play a role in angiogenesis. Because HIF-1 alpha is central to angiogenesis, we considered that prolidase may modulate this pathway. To test this hypothesis, we made expression constructs of human prolidase and obtained stable transfectants in colorectal cancer cells (RKO). Overexpression of prolidase resulted in increased nuclear hypoxia inducible factor (HIF-1 alpha) levels and elevated expression of HIF-1-dependent gene products, vascular endothelial growth factor (VEGF) and glucose transporter-1 (Glut-1). The activation of HIF-1-dependent transcription was shown by prolidase-dependent activation of hypoxia response element (HRE)-luciferase expression. We used an oxygen-dependent degradation domain (ODD)-luciferase reporter construct as a surrogate for HIF-1 alpha as an in situ prolyl-hydroxylase assay. Since this reporter is degraded by VHL-dependent mechanisms, the increased levels of luciferase observed with prolidase expression reflected the decreased HIF-1 alpha prolyl hydroxylase activity. Additionally, the differential expression of prolidase in 2 breast cancer cell lines showed prolidase-dependent differences in HIF-1 alpha levels. These findings show that metabolism of imidodipeptides by prolidase plays a previously unrecognized role in angiogenic signaling.

Download full-text

Full-text

Available from: James M Phang, Jan 15, 2015
0 Followers
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ERBB2 is an oncogenic receptor tyrosine kinase overexpressed in a subset of human breast cancer and other cancers. We recently found that human prolidase (PEPD), a dipeptidase, is a high affinity ERBB2 ligand and cross-links two ERBB2 monomers. Here, we show that recombinant human PEPD (rhPEPD) strongly inhibits ERBB2-overexpressing tumors in mice, whereas it does not impact tumors without ERBB2 overexpression. rhPEPD causes ERBB2 depletion, disrupts oncogenic signaling orchestrated by ERBB2 homodimers and heterodimers, and induces apoptosis. The impact of enzymatically-inactive mutant rhPEPDG278D on ERBB2 is indistinguishable from that of rhPEPD, but rhPEPDG278D is superior to rhPEPD for tumor inhibition. The enzymatic function of rhPEPD stimulates HIF-1α and other pro-survival factors in tumors, which likely attenuates its antitumor activity. rhPEPDG278D is also attractive in that it may not interfere with the physiologic function of endogenous PEPD in normal cells. Collectively, we have identified a human protein as an inhibitory ERBB2 ligand that inhibits ERBB2-overexpressing tumors in vivo. Several anti-ERBB2 agents are on the market but are hampered by drug resistance and high drug cost. rhPEPDG278D may synergize with these agents and may also be highly cost-effective, since it targets ERBB2 with a different mechanism and can be produced in bacteria.
    03/2015; 20(5). DOI:10.1016/j.ebiom.2015.03.016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and μCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1month being the most parameters normalized by 2months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest. Copyright © 2014 Elsevier Inc. All rights reserved.
    Bone 11/2014; 72C:53-64. DOI:10.1016/j.bone.2014.11.009 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The finding that hydralazine (HYD) affects collagen metabolism led us to investigate the mechanism of its action on collagen biosynthesis, prolidase expression and activity, expression of α(2)β(1) integrin, insulin-like growth factor-I receptor (IGF-IR), focal adhesion kinase (FAK), mitogen-activated protein (MAP) kinases (ERK(1), ERK(2)), and transcription factors hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB p65 (NF-κB p65) in human dermal fibroblasts. Confluent fibroblasts were treated with micromolar concentrations (50-500 μM) of HYD for 24 h. HYD had no influence on cell viability. It was found that HYD-dependent increase in collagen biosynthesis was accompanied by a parallel increase in prolidase activity and expression, HIF-1α expression, and decrease in DNA biosynthesis, compared to untreated cells. Since collagen biosynthesis and prolidase activity are regulated by a signal induced by activated α(2)β(1) integrin receptor as well as IGF-IR, the expression of these receptors was measured by Western immunoblot analysis. The exposure of the cells to HYD contributed to the increase in IGF-IR expression without any effect on α(2)β(1) integrin receptor and FAK expressions. It was accompanied by a decrease in expression of MAP kinases and NF-κB p65, the known inhibitor of collagen gene expression. The data suggest that the HYD-dependent increase of collagen biosynthesis in cultured human skin fibroblasts results from activation of IGF-IR expression and prolidase activity and downregulation of NF-κB p65.
    Archiv für Experimentelle Pathologie und Pharmakologie 01/2013; 386(4). DOI:10.1007/s00210-013-0836-5 · 2.36 Impact Factor