Article

Molecular cytogenetic analysis of follicular lymphoma (FL) provides detailed characterization of chromosomal instability associated with the t(14;18)(q32;q21) positive and negative subsets and histologic progression

Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
Cytogenetic and Genome Research (Impact Factor: 1.84). 01/2007; 118(2-4):337-44. DOI: 10.1159/000108318
Source: PubMed

ABSTRACT We analyzed a cohort of 61 follicular lymphomas (FL) with an abnormal G-banded karyotype by spectral karyotyping (SKY) to better define the chromosome instability associated with the t(14;18)(q32;q21) positive and negative subsets of FL and histologic grade. In more than 70% of the patients, SKY provided additional cytogenetic information and up to 40% of the structural abnormalities were revised. The six most frequent breakpoints in both SKY and G-banding analyses were 14q32, 18q21, 3q27, 1q11-q21, 6q11-q15 and 1p36 (15-77%). SKY detected nine additional sites (1p11-p13, 2p11-p13, 6q21, 8q24, 6q21, 9p13, 10q22-q24, 12q11-q13 and 17q11-q21) at an incidence of >10%. In addition to the known recurring translocations, t(14;18)(q32;q21) [70%], t(3;14)(q27;q32) [10%], t(1;14)(q21;q32) [5%] and t(8;14)(q24;q32) [2%] and their variants, 125 non-IG gene translocations were identified of which four were recurrent within this series. In contrast to G-banding analysis, SKY revealed a greater degree of karyotypic instability in the t(14;18) (q32;q21) negative subset compared to the t(14;18)(q32;q21) positive subset. Translocations of 3q27 and gains of chromosome 1 were significantly more frequent in the former subset. SKY also allowed a better definition of chromosomal imbalances, thus 37% of the deletions detected by G-banding were shown to be unbalanced translocations leading to gain of genetic material. The majority of recurring (>10%) imbalances were detected at a greater (2-3 fold) incidence by SKY and several regions were narrowed down, notably at gain 2p13-p21, 2q11-q21, 2q31-q37, 12q12-q15, 17q21-q25 and 18q21. Chromosomal abnormalities among the different histologic grades were consistent with an evolution from low to high grade disease and breaks at 6q11-q15 and 8q24 and gain of 7/7q and 8/8q associated significantly with histologic progression. This study also indicates that in addition to gains and losses, non-IG gene translocations involving 1p11-p13, 1p36, 1q11-q21, 8q24, 9p13, and 17q11-q21 play an important role in the histologic progression of FL with t(14;18)(q32;q21) and t(3q27).

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent technological advances allow analysis of genomic changes in cancer in unprecedented detail. The next challenge is to prioritize the multitude of genetic aberrations found and identify therapeutic opportunities. We recently completed a study that illustrates the use of unbiased genetic screens and murine cancer models to find therapeutic targets among complex genomic data. We genetically dissected the common deletion of chromosome 6q and identified the ephrin receptor A7 (EPHA7) as a tumor suppressor in lymphoma. Notably, EPHA7 encodes a soluble splice variant that acts as an extrinsic tumor suppressor. Accordingly, we developed an antibody-based strategy to specifically deliver EPHA7 back to tumors that have lost this gene. Recent sequencing studies have implicated EPHA7 in lung cancer and other tumors, suggesting a broader therapeutic potential for antibody-mediated delivery of this tumor suppressor for cancer therapy. Together, our comprehensive approach provides new insights into cancer biology and may directly lead to the development of new cancer therapies.
    Annals of the New York Academy of Sciences 05/2013; DOI:10.1111/nyas.12120 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reperfusion therapy for acute myocardial infarction has dramatically reduced mortality. Coronary angioplasty and thrombolysis are the most effective reperfusion techniques. The controversy about which of the two methods is best has been superseded by a search for the most rapid and effective way of inducing reperfusion, given the overriding importance of time for saving myocardial tissue. Consequently, pharmaco-invasive strategies, prehospital thrombolysis and rapid patient transport systems have all been implemented. Typically, a certain percentage of patients do not undergo reperfusion for a range of reasons, one of the most important being treatment delay. Trends in Latin America are similar to those in other parts of the world: there is an increasing use of angioplasty instead of thrombolysis and a significant number of patients do not undergo reperfusion. Some patient registries indicate that hospital mortality tends to be higher than in Europe or the United States. There are numerous reasons for the difference, among which are a delay in presentation and a lack of access to properly equipped hospitals because of social inequality. Scientific societies have a key role to play in promoting awareness about the importance of early diagnosis and treatment throughout the health-care community, health authorities, and society in general.
    Revista Espa de Cardiologia 01/2010; 63:12-19. DOI:10.1016/S0300-8932(10)70149-4 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To outline further genetic mechanisms of transformation from follicular lymphoma (FL) to diffuse large B-cell lymphoma (DLBCL), we have performed whole genome array-CGH in 81 tumors from 60 patients [29 de novo DLBCL (dnDLBCL), 31 transformed DLBCL (tDLBCL), and 21 antecedent FL]. In 15 patients, paired tumor samples (primary FL and a subsequent tDLBCL) were available, among which three possessed more than two subsequent tumors, allowing us to follow specific genetic alterations acquired before, during, and after the transformation. Gain of 2p15–16.1 encompassing, among others, the REL, BCL11A, USP34, COMMD1, and OTX1 genes was found to be more common in the tDLBCL compared with dnDLBCL (P < 0.001). Furthermore, a high-level amplification of 2p15–16.1 was also detected in the FL stage prior to transformation, indicating its importance during the transformation event. Quantitative real-time PCR showed a higher level of amplification of REL, USP34, and COMMD1 (all involved in the NFκΒ-pathway) compared with BCL11A, which indicates that the altered genes disrupting the NFκΒ pathway may be the driver genes of transformation rather than the previously suggested BCL11A. Moreover, a 17q21.33 amplification was exclusively found in tDLBCL, never in FL (P < 0.04) or dnDLBCL, indicating an upregulation of genes of importance during the later phase of transformation. Taken together, our study demonstrates potential genomic markers for disease progression to clinically more aggressive forms. We also confirm the importance of the TP53-, CDKN2A-, and NFκΒ-pathways for the transformation from FL to DLBCL. © 2014 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 09/2014; 53(9). DOI:10.1002/gcc.22184 · 3.84 Impact Factor