Article

Kinematic analysis of swing in pro and amateur golfers

Orthopaedics and Rehabilitation, Univeristy of Florida, Gainesville, USA.
International Journal of Sports Medicine (Impact Factor: 2.37). 07/2008; 29(6):487-93. DOI: 10.1055/s-2007-989229
Source: PubMed

ABSTRACT As golf grows in popularity, golf related injuries have increased. The purpose of this study was to calculate and compare upper body kinematics of healthy male golfers from different skill levels. Kinematic data were obtained from 18 professional, 18 low handicap, 18 mid handicap and 18 high handicap golfers with an optoelectronic system at 240 frames per second. Ten displacement parameters were calculated at address, peak of back swing and ball contact. Angular velocity parameters and respective temporal data were calculated during the downswing phase. Most parameters were significantly different between the higher skilled golfers (professional, low handicap) and the least skilled golfers (high handicap). At the peak of the swing, professionals produced the largest magnitudes for left shoulder horizontal adduction (125 +/- 6 degrees ), right shoulder external rotation (66 +/- 11 degrees ), and trunk rotation (60 +/- 7 degrees ). During the downswing, the professionals produced the largest angular velocities for the club shaft (2413 +/- 442 degrees /s), right elbow extension (854 +/- 150 degrees /s), right wrist (1183 +/- 299 degrees /s) and left wrist (1085 +/- 338 degrees /s). The results of this study show that improper mechanics of golf swing existed in middle and high handicap groups. These improper mechanics may contribute to golf related injuries.

4 Followers
 · 
260 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Field-based methods of evaluating three-dimensional (3D) swing kinematics offer coaches and researchers the opportunity to assess golfers in context-specific environments. The purpose of this study was to establish the inter-trial, between-tester, between-location, and between-day repeatability of thorax and pelvis kinematics during the downswing using an electromagnetic motion capture system. Two experienced testers measured swing kinematics in 20 golfers (handicap < or =14 strokes) on consecutive days in an indoor and outdoor location. Participants performed five swings with each of two clubs (five-iron and driver) at each test condition. Repeatability of 3D kinematic data was evaluated by computing the coefficient of multiple determination (CMD) and the systematic error (SE). With the exception of pelvis forward bend for between-day and between-tester conditions, CMDs exceeded 0.854 for all variables, indicating high levels of overall waveform repeatability across conditions. When repeatability was compared across conditions using MANOVA, the lowest CMDs and highest SEs were found for the between-tester and between-day conditions. The highest CMDs were for the inter-trial and between-location conditions. The absence of significant differences in CMDs between these two conditions supports this method of analysing pelvis and thorax kinematics in different environmental settings without unduly affecting repeatability.
    Sports Biomechanics 06/2012; 11(2):262-72. DOI:10.1080/14763141.2012.654502 · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the dynamics of upper body motion during the downswing is an important step in determining the control strategies required for a successful and repeatable golf swing. The purpose of this study was to examine the relationship between head, thorax, and pelvis motion, during the downswing of professional golfers. Three-dimensional data were collected for 14 male professional golfers (age 27 +/- 8 years, golf-playing experience 13.3 +/- 8 years) using an optical motion analysis system. The amplitude and timing of peak speed and peak velocities were calculated for the head, thorax, and pelvis during the downswing. Cross-correlation analysis was used to examine the strength of coupling and phasing between and within segments. The results indicated the thorax segment had the highest peak speeds and peak velocities for the upper body during the downswing. A strong coupling relationship was evident between the thorax and pelvis (average R2 = 0.92 across all directions), while the head and thorax showed a much more variable relationship (average R2 = 0.76 across all directions). The strong coupling between the thorax and pelvis is possibly a method for simplifying the motor control strategy used during the downswing, and a way of ensuring consistent motor patterns.
    Sports Biomechanics 06/2012; 11(2):165-74. DOI:10.1080/14763141.2011.638390 · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine biomechanical factors that may influence golf swing power generation. Three-dimensional kinematics and kinetics were examined in 10 professional and 5 amateur male golfers. Upper-torso rotation, pelvic rotation, X-factor (relative hip-shoulder rotation), O-factor (pelvic obliquity), S-factor (shoulder obliquity), and normalized free moment were assessed in relation to clubhead speed at impact (CSI). Among professional golfers, results revealed that peak free moment per kilogram, peak X-factor, and peak S-factor were highly consistent, with coefficients of variation of 6.8%, 7.4%, and 8.4%, respectively. Downswing was initiated by reversal of pelvic rotation, followed by reversal of upper-torso rotation. Peak X-factor preceded peak free moment in all swings for all golfers, and occurred during initial downswing. Peak free moment per kilogram, X-factor at impact, peak X-factor, and peak upper-torso rotation were highly correlated to CSI (median correlation coefficients of 0.943, 0.943, 0.900, and 0.900, respectively). Benchmark curves revealed kinematic and kinetic temporal and spatial differences of amateurs compared with professional golfers. For amateurs, the number of factors that fell outside 1-2 standard deviations of professional means increased with handicap. This study identified biomechanical factors highly correlated to golf swing power generation and may provide a basis for strategic training and injury prevention.
    Journal of applied biomechanics 08/2011; 27(3):242-51. · 0.90 Impact Factor