Article

A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization.

Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
Cell host & microbe (Impact Factor: 12.19). 05/2007; 1(2):95-107. DOI: 10.1016/j.chom.2007.03.005
Source: PubMed

ABSTRACT We have previously characterized a non-O1, non-O139 Vibrio cholerae strain, AM-19226, that lacks the known virulence factors but contains components of a type III secretion system (T3SS). In this study, we demonstrated that the T3SS is functional and is required for intestinal colonization in the infant mouse model. We also identified VopF, which is conserved among T3SS-positive V. cholerae strains, as an effector containing both formin homology 1-like (FH1-like) and WASP homology 2 (WH2) domains. Translocation of VopF by V. cholerae or expression by transfection altered the actin cytoskeletal organization of the eukaryotic host cells. In vitro domain analysis indicated that both FH1-like and WH2 domains are required for actin nucleation and polymerization activity. These data correlate with in vivo data, suggesting that VopF-mediated alteration of actin polymerization homeostasis is required for efficient intestinal colonization by T3SS+V. cholerae in the infant mouse model.

0 Followers
 · 
232 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 04/2015; 161(2):348-360. DOI:10.1016/j.cell.2015.02.044 · 33.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manipulation of the actin cytoskeleton is a commonly used process by which bacterial pathogens and viruses are able to neutralize host defense mechanisms and subvert them in order to replicate in a hostile environment. Diverse bacteria display a wide array of mechanisms of regulation of microfilaments to enter, move within or exit the host cell. A less studied subject is how pathogens may co-opt the actin cytoskeleton to disturb vesicle trafficking pathways, namely phagolysosomal fusion, and avoid degradation. In fact, although actin plays a role in endosomal trafficking and phagosome maturation, the knowledge on the exact mechanisms and additional players is still scarce. Recently, we found that the Legionella pneumophila virulence factor VipA is an actin nucleator, associates with actin filaments and early endosomes during infection, and interferes in yeast organelle trafficking pathways, suggesting it may be linking actin dynamics to endosome biogenesis. Further studies on this protein, together with work on other bacterial effectors, may help shed light in the role of actin in endosomal maturation.
    02/2012; 2(2):38-42.

Full-text (2 Sources)

Download
23 Downloads
Available from
May 28, 2014