Synthesis and biological evaluation of new 4beta-5-Fu-substituted 4'-demethylepipodophyllotoxin derivatives.

State Key Laboratory of Applied Organic Chemistry & Department of Chemistry, Lanzhou University, Lanzhou, 730000, PR China.
Molecules (Impact Factor: 2.42). 02/2006; 11(11):849-57.
Source: PubMed

ABSTRACT A series of new 4beta-5-Fu-substituted 4'-demethylepipodophyllotoxin derivatives were synthesized and evaluated, together with some previously prepared ones, for their cytotoxic activities against four tumor cell lines (HL60, P388, A549 and BEL7402). Three of these compounds exhibited superior in vitro anticancer activity against P388 and A549 than the reference compound etoposide. In addition, the partition coefficients (P) of all the new and previously synthesized derivatives were determined.

7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution electrospray ionization multistage tandem mass spectrometry (MS(1-9)) was used to determine the accurate masses and the fragmentation pathways of protonated podophyllotoxin (1) and its corresponding 4'-demethyl-4beta-substituted derivatives (2-4). The protonated molecules, [M + H](+), of all the four compounds were observed in the conventional single-stage mass spectra. Two fragmentation pathways, that appear to be characteristic of the four compounds, are proposed on the basis of their multistage tandem mass spectrometric data. The characteristic elimination, from the precursor protonated ions, of the neutral groups 4-R(1)H, 1-ArH, CO, CH(2)O and C(4)H(4)O(2), in which R is located on C-4, is the common elimination, and the product ions at m/z 267, 239, 229, 181, 173, 153, 143 and 115 are the common diagnostic masses. The elimination of the R(1) group substituent located on the C-4 position of compounds 1-4 has a significant influence on the fragmentation pathway obtained in the conventional single-stage mass spectra. A large R(1) group would be unfavorable for this elimination, unless the collision energy is raised. Apart from the common fragmentations obtained for the protonated molecules 1-4, significant additional product ions were detected in the various multistage tandem mass spectrometric analyses, particularly in the case of the product ions derived initially from the phenolic hydroxyl group of 2-4, which are different from those of 1. Based on these additional formed product ions, several additional fragmentation pathways for 1 or 2-4 are also presented.
    Rapid Communications in Mass Spectrometry 09/2007; 21(17):2843-52. DOI:10.1002/rcm.3156 · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work is to review the published studies on the mechanisms of action and resistance of 5-fluorouracil. The review is divided into three main sections: mechanisms of anti-tumor action, studies of the resistance to the drug, and procedures for the identification of new genes involved in resistance with microarray techniques. The details of the induction and reversal of the drug resistance are also described. © 2008 by the authors; licensee Molecular Diversity Preservation International.
    Molecules 02/2008; 13(8):1551-69. DOI:10.3390/molecules13081551 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution electrospray ionization multistage tandem mass spectrometry (MS 1-7) in negative ion mode was used to determine the accurate masses and fragmentation pathways of two compounds, 4'-demethylepipodophyllotoxin and 4'-demethyl-4-azido-4-deoxyepipodophyllotoxin, which are key intermediate compounds for the preparation of podophyllotoxin-type anti-cancer drugs. The deprotonated molecules [M-H]* of both compounds were readily observed in the conventional single-stage mass spectra due to the presence of the phenolic hydroxyl group in the molecules. Abundant information on the product ions was obtained from tandem mass spectra (MS 2-7) in negative ion mode. Based on the exact masses acquired from 14 different tandem mass spectra, a similar MSn fragmentation pathway was proposed for both compounds. A characteristic product ion produced in the MS 2-4 product ion scan experiments is the cyclohexylenetrione anion [M-H-2Me-RH]* or [M-H-RH-2Me]* at m/z 351 (C19H11O7) formed by the consecutive losses of two CH3 radicals at the 3'- and 5'-positions and the neutral loss of RH, where R = a 4-substituted group (-OH or -N3), from the [M-H]* ion. This anion may be considered as diagnostic for the presence of this type of compound. The other common cleavages are the neutral losses of CO at least two times in the MS 6,7 product ion spectra. The results of this work could serve as an effective tool for the detection or determination of other derivatives of 4'-demethyl-4beta-substituted podophyllotoxin, which are widely used as intermediates for the preparation of anti-tumor drugs.
    Rapid Communications in Mass Spectrometry 02/2008; 22(3):373-8. DOI:10.1002/rcm.3366 · 2.25 Impact Factor
Show more


7 Reads
Available from