Preclinical studies of celastrol and acetyl isogambogic acid in melanoma.

Signal Transduction Program, Cancer Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
Clinical Cancer Research (Impact Factor: 8.19). 12/2007; 13(22 Pt 1):6769-78. DOI: 10.1158/1078-0432.CCR-07-1536
Source: PubMed

ABSTRACT Sensitize melanomas to apoptosis and inhibit their growth and metastatic potential by compounds that mimic the activities of activating transcription factor 2 (ATF2)-driven peptides.
Small-molecule chemical library consisting of 3,280 compounds was screened to identify compounds that elicit properties identified for ATF2 peptide, including (a) sensitization of melanoma cells to apoptosis, (b) inhibition of ATF2 transcriptional activity, (c) activation of c-Jun NH(2)-terminal kinase (JNK) and c-Jun transcriptional activity, and (d) inhibition of melanoma growth and metastasis in mouse models.
Two compounds, celastrol (CSL) and acetyl isogambogic acid, could, within a low micromolar range, efficiently elicit cell death in melanoma cells. Both compounds efficiently inhibit ATF2 transcriptional activities, activate JNK, and increase c-Jun transcriptional activities. Similar to the ATF2 peptide, both compounds require JNK activity for their ability to inhibit melanoma cell viability. Derivatives of CSL were identified as potent inducers of cell death in mouse and human melanomas. CSL and a derivative (CA19) could also efficiently inhibit growth of human and mouse melanoma tumors and reduce the number of lung metastases in syngeneic and xenograft mouse models.
These studies show for the first time the effect of CSL and acetyl isogambogic acid on melanoma. These compounds elicit activities that resemble the well-characterized ATF2 peptide and may therefore offer new approaches for the treatment of this tumor type.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were to choose a suitable adsorbent of self-microemulsion and to develop a fine solid self-microemulsifying dispersible tablets for promoting the dissolution and oral bioavailability of celastrol. Solubility test, self-emulsifying grading test, droplet size analysis and ternary phase diagrams test were performed to screen and optimize the composition of liquid celastrol self-microemulsifying drug delivery system (SMEDDS). Then microcrystalline cellulose KG 802 was added as a suitable adsorbent into the optimized liquid celastrol-SMEDDS formulation to prepare the dispersible tablets by wet granulation compression method. The optimized formulation of celastrol-SMEDDS dispersible tablets was finally determinated by the feasibility of the preparing process and redispersibility. The in vitro study showed that the dispersible tablets could disperse in the dispersion medium within 3min with the average particle size of 25.32±3.26nm. In vivo pharmacokinetic experiments of rats, the relative bioavailability of celastrol SMEDDS and SMEDDS dispersible tablets compared to the 0.4% CMC-Na suspension was 569±7.07% and 558±6.77%, respectively, while there were no significant difference between the SMEDDS and SMEDDS dispersible tablets. The results suggest the potential use of SMEDDS dispersible tablets for the oral delivery of poorly water-soluble terpenes drugs, such as celastrol.
    International Journal of Pharmaceutics 06/2014; · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The survival rate for patients with oral squamous cell carcinoma (OSCC) has not seen marked improvement in recent decades despite enhanced efforts in prevention and the introduction of novel therapies. We have reported that pharmacological exacerbation of the unfolded protein response (UPR) is an effective approach to killing OSCC cells. The UPR is executed via distinct signaling cascades whereby an initial attempt to restore folding homeostasis in the endoplasmic reticulum during stress is complemented by an apoptotic response if the defect cannot be resolved. To identify novel small molecules able to overwhelm the adaptive capacity of the UPR in OSCC cells, we engineered a complementary cell-based assay to screen a broad spectrum of chemical matter. Stably transfected CHO-K1 cells that individually report (luciferase) on the PERK/eIF2α/ATF4/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR pathways, were engineered [1]. The triterpenoids dihydrocelastrol and celastrol were identified as potent inducers of UPR signaling and cell death in a primary screen and confirmed in a panel of OSCC cells and other cancer cell lines. Biochemical and genetic assays using OSCC cells and modified murine embryonic fibroblasts demonstrated that intact PERK-eIF2-ATF4-CHOP signaling is required for pro-apoptotic UPR and OSCC death following celastrol treatment.
    Experimental Cell Research 08/2014; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Suberoylanilide hydroxamic acid (SAHA) is a promising histone deacetylase (HDAC) inhibitor approved by the US Food and Drug Administration (FDA) and whose clinical application for solid tumours is partially limited by decreased susceptibility in cancer cells due to nuclear factor (NF)-κB activation. As an NF-κB inhibitor, celastrol exhibits potent anticancer effects but has failed to enter clinical trials due to its toxicity. In this report, we demonstrated that the combination of celastrol and SAHA exerted substantial synergistic efficacy against human cancer cells in vitro and in vivo accompanied by enhanced caspase-mediated apoptosis. This drug combination inhibited the activation of NF-κB caused by SAHA monotherapy and consequently led to increased apoptosis in cancer cells. Interestingly, E-cadherin was dramatically downregulated in celastrol-resistant cancer cells, and E-cadherin expression was closely related to decreased sensitivity to celastrol. However, our combination treatment significantly augmented the expression of E-cadherin, suggesting that mutual mechanisms contributed to the synergistic anticancer activity. Furthermore, the enhanced anticancer efficacy of celastrol combined with SAHA was validated in a human lung cancer 95-D xenograft model without increased toxicity. Taken together, our data demonstrated the synergistic anticancer effects of celastrol and SAHA due to their reciprocal sensitisation, which was simultaneously regulated by NF-κB and E-cadherin; thus, the combination of celastrol and SAHA was superior to other combination regimens that rely on a single mechanism. Our findings not only open new opportunities for the clinical development of SAHA but should also motivate the clinical investigation of celastrol, which has been hampered by its toxicity. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 02/2014; · 6.20 Impact Factor


1 Download
Available from