Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase.

Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Italy.
FEBS Journal (Impact Factor: 3.99). 01/2008; 274(24):6426-35. DOI: 10.1111/j.1742-4658.2007.06160.x
Source: PubMed

ABSTRACT 6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho-d-erythronate (4PE) and 4-phospho-d-erythronohydroxamate are two of the strongest inhibitors of the Trypanosoma brucei enzyme. Binding of the substrate 6-phospho-d-gluconate (6PG), the inhibitors 5-phospho-d-ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho-d-gluconate dehydrogenase from T. brucei was studied using isothermal titration calorimetry. Binding of the substrate (K(d) = 5 microm) and its analogues (K(d) =1.3 microm and K(d) = 2.8 microm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the K(d) value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the ''gold standard'' and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
    Journal of Molecular Recognition 01/2008; 21(5):289-312. DOI:10.1002/jmr.909 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 6-phosphogluconate dehydrogenase (6PGDH), the third enzyme of the pentose phosphate pathway (PPP), is essential for biosyntheses and oxidative stress defence. It also has the function of depleting 6PG, whose accumulation induces cell senescence. 6PGDH is a proposed drug target for African trypanosomiasis caused by Trypanosoma brucei and for other microbial infections and cancer. Gel filtration, density gradient sedimentation, cross-linking and dynamic light scattering were used to assay the oligomerization state of T. brucei 6PGDH in the absence and presence of several ligands. The enzyme displays a dimer-tetramer equilibrium and NADPH (but not NADP) reduces the rate of approach to equilibrium, while 6PG is able to antagonize the NADPH effect. The different behaviour of the two forms of coenzyme appears to be related to the differences in ΔCp, with NADP binding ΔCp closer to what is expected of crystallographic structures, while NADPH ΔCp is three times larger. The estimated dimer-tetramer association constant is 1.5 10(6) M(-1), and the specific activity of the tetramer is about 3 fold higher than the specific activity of the dimer. Thus, cellular conditions promoting tetramer formation could allow an efficient clearing of 6PG. Experiments carried out on sheep liver 6PGDH indicate that tetramerization is a specificity of the parasite enzyme.
    Biochimica et Biophysica Acta 10/2013; 1834(12). DOI:10.1016/j.bbapap.2013.09.018 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the preceding symposium see Zbl 1220.68018.
    BSB; 01/2012

Full-text (2 Sources)

Available from
Aug 28, 2014